

ASME ORC 2013

2nd International Seminar on ORC Power Systems

October 7th & 8th, 2013 De Doelen, Rotterdam, The Netherlands

CONCEPT OF THE GEO-BIO MICRO POWER PLANT

Władysław Kryłłowicz, DSc, PhD, TUL Prof. Dorota Piotrowska, PhD Łukasz Antczak, MSc

Lodz University of Technology, Institute of Turbomachinery www.p.lodz.pl www.imp.p.lodz.pl

Localisation of the polish existing geothermal facilites

Geothermal conditions in Uniejów

Discovered in 1978

Run in 2001

Temperature of water at the production well [°C]: 67-70

Lower Cretaceous sandstone at a depth of [m] 2000

Mineralization [g/l]: 6,8-8,8

Mass flow rate: 33.3 kg/s (120m3/h)

The scheme of heating system in Uniejow

The scheme of heating system in Uniejow

Identified problems...

- Considerable diffrences in heat consumption in summer and winter – this means a lack of utilization of available geothermal resources in case of a traditional power plant.
- Lack of the geothermal water consumption in summer creates a danger of the flow blockage

Why a geothermal power plant?

Concept of the full utilization of energy from geothermal waters

Low temperature heat sources?

- Q: What if the energy source is water of the temperature 100°C (for e.g. geothermal water, waste heat)?
- **Ans:** Using water in the cycle is problematic due to low pressure, low density of the steam and low cycle efficiency.
- Solution: Organic Rankine Cycle (ORC)

Concept of the "geo-bio" hybrid power plant

Schematic view of the "geo-bio" hybrid power plant (Version "A")

Schematic view of the "geo-bio" hybrid power plant (Version "B")

Scheme of the experimental stand

Experimental stand

A test stand : 1-steam boiler, 2-condenser, 3-water tank, 4-steam turbine, 5-eddy curent brake, 6condenser/evaporator, 7- HFE 7100 tank, 8-ORC turbine, 9-condenser ORC, 10-fuel tank, 11- pump, 12- ORC pump, 13-resistance heater

Steam turbine - general view

Mach number distribution in the steam turbine blading system

ORC turbine - general view

Streamlines distribution in the ORC blading system

Mach number distribution in the ORC blading system

Power in function of effciency of the ORC turbogenerator

Effciency of the micro power plant in function of effciency of the ORC turbogenerator

Electric power in function of generator speed

Prędkość obrotowa generatora [obr/min]

Ecological effects

The quantities of pollution emissions to atmosphere are reduced by replacing the power and heat generation based on the coal-fired power plant by a geo-hybrid power plant with similar output:

- dust and ash: 95 tons
- CO2 approx. 18950 tons/year
- SO2: 13.8 tons/year
- NOx: 4.8 tons/year

See you in Uniejow 🙂

