DEVELOPMENT OF A 300 kW_e INTEGRATED AXIAL TURBINE AND GENERATOR FOR ORC APPLICATIONS

2nd International Seminar on ORC Power Systems: Turbo Expanders II
De Doelen, Rotterdam, The Netherlands

David Japikse, Francis Di Bella, Maxwell Hurgin, Keith Patch
Concepts NREC (CN)

Tuesday, October 8, 2013, 14:40
Challenges of Existing Non-Hermetic ORC Systems

- **Shaft seals**
 - Generally accepted to be the least reliable component in rotating machinery
 - Working fluid leakage is expensive
 - Possibility of fire with flammable refrigerants
 - Must measure and log refrigerant levels
 - Leaked refrigerant replacement is expensive
 - Requires shaft seal pressure control system, temperature monitors, leak monitors, etc.
 - High inspection and maintenance costs; periodic seal replacement
 - Mechanical losses: 1–2%

- **Gearbox**
 - Inspection and maintenance costs
 - Mechanical losses: ≈4%

- **Couplings**
 - Inspection and maintenance costs

- **Lubricated bearings**
 - Mechanical losses: ≈2%
 - Requires oil system
 - High-speed lubricated bearings have rotordynamics complications

- **Oil systems**
 - Use of oil limits the maximum temperature of the heat source
 - High temperatures degrade oil
 - Limits applicability of ORC technology
 - Requires oil separator, filter, strainer, and cooler
 - Requires periodic oil filter and strainer changes
 - Parasitic power losses: ≈2%
 - High maintenance issues and costs
 - Must measure and log oil levels
 - Periodic oil additions and changes
 - Periodic oil sampling and analysis (moisture, acidity, and metal content)

- **Instrumentation**
 - Separate vibration probes and proximity sensors are usually required to monitor turbine and/or gearbox shaft vibration levels on high-speed rotary shafts

- **Turbine matching**
 - Standardized turbine designs of many ORC systems are a poor match for many applications
Effect of Stage Reaction on Turbine Design

- Customized ORC turbine designs lead to optimum system efficiency
- Reaction (Λ) is a very important parameter in turbine design, fundamentally influencing:
 - Turbine performance characteristics
 - Stator and rotor design
- Choosing the right reaction is the key to successful design
- Assuming constant blade speed and meridional velocity, and neglecting internal losses, for a stage of arbitrary reaction, it can be shown that the stage efficiency and specific work output are:

\[
\eta = 2\nu \left\{ (1 - \Lambda)^{1/2} \sin \alpha_2 + \left[(1 - \Lambda)\sin^2 \alpha_2 + \nu^2 - 2\nu (1 - \Lambda)^{1/2} \sin \alpha_2 + \Lambda \right]^{1/2} - \nu \right\}
\]

\[
\frac{W_x}{U^2} = \frac{\sqrt{1 - \Lambda}}{\Lambda} \sin \alpha_2 + \left[\frac{1 - \Lambda}{\nu^2} \sin^2 \alpha_2 + 1 - 2 \frac{\sqrt{1 - \Lambda}}{\Lambda} \sin \alpha_2 + \frac{\Lambda}{\nu^2} \right]^{1/2} - 1
\]

Where:
- \(\Lambda \) = Reaction = \(\Delta h_{\text{Rotor}} / \Delta h_{\text{Stage, Stagnation Conditions}} \)
- \(\eta \) = Stage Efficiency
- \(W_x \) = Work, Axial Component
- \(U \) = Blade Speed
- \(C_2 \) = Absolute Velocity, Rotor Stage Inlet
- \(W_2 \) = Relative Velocity, Rotor Stage Inlet
- \(\nu \) = Velocity Ratio \(U/C_x \)
- \(\alpha_2 \) = Absolute Flow Angle, Rotor Stage Inlet
- \(\beta_2 \) = Relative Flow Angle, Rotor Stage Inlet
Stage Reaction Selection Affects Turbine Performance Characteristics

- Low-Reaction Turbines are generally favored for high-pressure ratio, low-flow applications (i.e., ORC systems), but the choice of reaction depends on many effects – structural, manufacturing, and aero performance.
- Reaction is also influenced by the priorities of high efficiency (→ medium reaction) and high specific work output (→ low reaction).

Results for $\alpha_2 = 75^\circ$
CN’s Organic Rankine Cycle Solution Addresses Technical and Economic Issues

- ORC Turbine Generator Unit (TGU)
 - Consists of: turbine, generator, generator controls, and power electronics
- Hermetically sealed 20,000 rpm TGU
 - Axial turbine directly mounted to generator shaft
 - No shaft seal, gearbox, or coupling
 - Oil-free design
- Magnetic bearings
 - No lubricated bearings
 - Inherent radial vibrational monitoring
- Generator is evaporatively-cooled by refrigerant – patent pending
- State-of-the-art, variable-frequency permanent-magnet generator and controls
 - No speed governor
- Patent-pending, modular turbine flow path and system
 - Can easily customize a 1- to 4-stage, axial nozzle-rotor subassembly cartridge
 - Allows use with a wide variety of working fluids and pressure ratios
 - Can meet a customer’s exact cycle requirements
 - Radial turbine option depending on fluid enthalpy and pressure ratio
CN’s CN300 ORC TGU Can Operate Over a Range of Conditions

- Initial member of CN’s ORC TGU product line
- Designed using CN’s Agile Engineering Design System®
- Gross power range
 - 150–330 kWe
- TGU speed
 - 20,000 rpm
- Turbine inlet temperature range
 - 80–220°C
- Turbine casing inlet pressure rating
 - 40 Bar (Absolute)
- Turbine casing outlet pressure rating
 - 14 Bar (Absolute)
- Turbine pressure ratio range
 - 2:1–25:1
- Working fluid compatibility
 - R112, R113, R114, R134a, R236fa, R245fa
- TGU size
 - 1.07 m x 0.62 m x 0.87 m
 - 544 kg (1200 pounds)
- Electrical details
 - 380–480 VAC, 3-phase, 50–60 Hz

Agile Engineering Design System is a registered trademark of Concepts ETI, Inc.
CN300 Uses Advanced Aerodynamic Design to Optimize Performance

- **CN’s Agile Engineering Design System**
 - Ideally suited for ORC turbine applications
 - Computer-Aided Engineering (CAE) → Computer-Aided Manufacturing (CAM)

- **CAE: Aerodynamic analysis**
 - Uses CN’s AxCent® software
 - For complex blade geometries
 - Interfaces with third-party optimizers

- **Multistage 3D CFD analysis**
 - Allows accurate performance prediction of entire unit
 - Allows improved stage matching
 - Better resolution of 3D effects and secondary flows

- **Custom, optimized design**
 - Optimized for each customer application
 - 1 to 4 expansion stages
 - Choice of refrigerants and conditions

- **Calculate performance of existing CN300 design with new customer conditions**
 - Avoid nonrecurrent engineering

Typical CFD Turbine Analysis Results

Mach Number Contours Through Flow Path

AxCent is a registered trademark of Concepts ETI, Inc.
CN300 Mechanical Design Uses Advanced Design Techniques

- CAE-based Finite Element Analysis (FEA)
 - FEA models created in ANSYS® Workbench™
 - Blade stacking of 2D cross sections
 - Blade restaggering around an arbitrary axis
 - Bowed blading defined by hub-to-shroud bow profiles
 - And more

- Also developed specifications and methodology for Selective Laser Sintering (SLS) process
 - For rotors and stators
 - Good alternative to 5-axis machining
 - Complexity of airfoil shape is not limited by machining (i.e., flank milling vs. point milling)

ANSYS Workbench is a trademark of ANSYS, Inc. or its subsidiaries.
Brush Seals Markedly Improve CN300 Performance

- Brush seals – patent pending
 - Used since the early 1980s in aircraft engines
 - Used since the mid-1990s in gas and steam turbines
 - Installed on rotor and stator
 - Significant impact on ORC CN300 performance
 - Reduce gas leakage by 97.8%
 - Improve efficiency by 3.7 percentage points

No Leakage (Ideal Brush Seal)

Leakage with Labyrinth Seal

Brush Seals (Typical of 5) Patent Pending
Previous ORC system limitations resolved
 - New CN300 TGU = hermetic, direct-drive, oil-free, magnetic bearings, refrigerant-cooled, no speed governor

CN300 design goal: Zero maintenance
 - Reduced operating/maintenance costs
 - Reduced project lifecycle costs
 - Maximized TGU efficiency

CN300 design criteria: Easily customized flow path design
 - For various heat sources, temperatures, and working fluids
 - To maximize turbine efficiency
 - To maximize client project revenue

Now commercially available

Finished Machined Rotor
(one of three used in the CN300 system)