DEVELOPMENT OF A 300 kW_e INTEGRATED AXIAL TURBINE AND GENERATOR FOR ORC APPLICATIONS

2nd International Seminar on ORC Power Systems: Turbo Expanders II De Doelen, Rotterdam, The Netherlands

> David Japikse, Francis Di Bella, Maxwell Hurgin, Keith Patch Concepts NREC (<u>CN</u>)

> Tuesday, October 8, 2013, 14:40

© 2013 Concepts ETI, Inc. All rights reserved.

Challenges of Existing Non-Hermetic ORC Systems

Shaft seals

- Generally accepted to be the least reliable component in rotating machinery
- Working fluid leakage is expensive
 - Possibility of fire with flammable refrigerants
 - Must measure and log refrigerant levels
 - Leaked refrigerant replacement is expensive
- Requires shaft seal pressure control system, temperature monitors, leak monitors, etc.
- High inspection and maintenance costs; periodic seal replacement
- Mechanical losses: 1–2%

Gearbox

- Inspection and maintenance costs
- Mechanical losses: ≈4%

Couplings

Inspection and maintenance costs

Lubricated bearings

- Mechanical losses: ≈2%
- Requires oil system
- High-speed lubricated bearings have rotordynamics complications

Oil systems

- Use of oil limits the maximum temperature of the heat source
 - High temperatures degrade oil
 - Limits applicability of ORC technology
- Requires oil separator, filter, strainer, and cooler
- Requires periodic oil filter and strainer changes
- Parasitic power losses: ≈2%
- High maintenance issues and costs
 - Must measure and log oil levels
 - Periodic oil additions and changes
 - Periodic oil sampling and analysis (moisture, acidity, and metal content)

Instrumentation

 Separate vibration probes and proximity sensors are usually required to monitor turbine and/or gearbox shaft vibration levels on high-speed rotary shafts

Turbine matching

 Standardized turbine designs of many ORC systems are a poor match for many applications

Effect of Stage Reaction on Turbine Design

- Customized ORC turbine designs lead to optimum system efficiency
- Reaction (Λ) is a very important parameter in turbine design, fundamentally influencing:
 - Turbine performance characteristics
 - Stator and rotor design
- Choosing the right reaction is the key to successful design
- Assuming constant blade speed and meridional velocity, and neglecting internal losses, for a stage of arbitrary reaction, it can be shown that the stage efficiency and specific work output are:

$$\eta = 2\upsilon \left\{ \left(1 - \Lambda\right)^{1/2} \sin \alpha_2 + \left[\left(1 - \Lambda\right) \sin^2 \alpha_2 + \upsilon^2 - 2\upsilon \left(1 - \Lambda\right)^{1/2} \sin \alpha_2 + \Lambda \right]^{1/2} - \upsilon \right\}$$
$$\frac{W_x}{U^2} = \frac{\sqrt{1 - \Lambda}}{\Lambda} \sin \alpha_2 + \left[\frac{1 - \Lambda}{\upsilon^2} \sin^2 \alpha_2 + 1 - 2\frac{\sqrt{1 - \Lambda}}{\Lambda} \sin \alpha_2 + \frac{\Lambda}{\upsilon^2} \right]^{1/2} - 1$$

- Where: $\Lambda = \text{Reaction} = \Delta h_{\text{Rotor}} / \Delta h_{\text{Stage, Stagnation Conditions}}$
 - η = Stage Efficiency
 - $W_{\rm x}$ = Work, Axial Component
 - U = Blade Speed
 - C₂ = Absolute Velocity, Rotor Stage Inlet
 - W_2 = Relative Velocity, Rotor Stage Inlet
 - υ = Velocity Ratio U/C_x
 - α_2 = Absolute Flow Angle, Rotor Stage Inlet
 - β_2 = Relative Flow Angle, Rotor Stage Inlet

ASME ORC 2013 © 2013 Concepts ETI, Inc. All rights reserved.

3

Stage Reaction Selection Affects **Turbine Performance Characteristics**

- Low-Reaction Turbines are generally favored for high-pressure ratio, low-flow applications (i.e., ORC systems), but the choice of reaction depends on many effects - structural, manufacturing, and aero performance
- Reaction is also influenced by the priorities of high efficiency (\rightarrow medium reaction) and high specific work output (\rightarrow low reaction)

© 2013 Concepts ETI, Inc. All rights reserved.

<u>CN</u>'s Organic Rankine Cycle Solution Addresses Technical and Economic Issues

ORC Turbine Generator Unit (TGU)

Consists of: turbine, generator, generator controls, and power electronics

Hermetically sealed 20,000 rpm TGU

- Axial turbine directly mounted to generator shaft
- No shaft seal, gearbox, or coupling
- Oil-free design
- Magnetic bearings
 - No lubricated bearings
 - Inherent radial vibrational monitoring

- Generator is evaporatively-cooled by refrigerant patent pending
- State-of-the-art, variable-frequency permanent-magnet generator and controls
 - No speed governor
- Patent-pending, modular turbine flow path and system
 - Can easily customize a 1- to 4-stage, axial nozzle-rotor subassembly cartridge
 - Allows use with a wide variety of working fluids and pressure ratios
 - Can meet a customer's exact cycle requirements
 - Radial turbine option depending on fluid enthalpy and pressure ratio

<u>CN</u>'s CN300 ORC TGU Can Operate Over a Range of Conditions

- Initial member of <u>CN</u>'s ORC TGU product line
- Designed using <u>CN</u>'s Agile Engineering Design System[®]
- Gross power range
 - 150–330 kWe
- TGU speed
 - 20,000 rpm
- Turbine inlet temperature range
 - 80-220°C
- Turbine casing inlet pressure rating
 - 40 Bar (Absolute)
- Turbine casing outlet pressure rating
 - 14 Bar (Absolute)
- Turbine pressure ratio range
 - 2:1–25:1
- Working fluid compatibility
 - R112, R113, R114, R134a, R236fa, R245fa
- TGU size
 - 1.07 m x 0.62 m x 0.87 m
 - 544 kg (1200 pounds)
- Electrical details
 - 380–480 VAC, 3-phase, 50–60 Hz

ASME ORC 2013 © 2013 Concepts ETI, Inc. All rights reserved. Agile Engineering Design System is a registered trademark of Concepts ETI, Inc.

<image>

CN300 Uses Advanced Aerodynamic Design to Optimize Performance

• <u>CN</u>'s Agile Engineering Design System

- Ideally suited for ORC turbine applications
- Computer-Aided Engineering (CAE) →
 Computer-Aided Manufacturing (CAM)
- CAE: Aerodynamic analysis
 - Uses <u>CN</u>'s AxCent[®] software
 - For complex blade geometries
 - Interfaces with third-party optimizers

Multistage 3D CFD analysis

- Allows accurate performance prediction of entire unit
- Allows improved stage matching
- Better resolution of 3D effects and secondary flows

Custom, optimized design

- Optimized for each customer application
- 1 to 4 expansion stages
- Choice of refrigerants and conditions

Calculate performance of existing CN300 design with new customer conditions

Avoid nonrecurrent engineering

Typical CFD Turbine Analysis Results

Mach Number Contours Through Flow Path

AxCent is a registered trademark of Concepts ETI, Inc.

CN300 Mechanical Design Uses Advanced Design Techniques

CAE-based Finite Element Analysis (FEA)

- FEA models created in ANSYS[®] Workbench[™]
- Blade stacking of 2D cross sections
- Blade restaggering around an arbitrary axis
- Bowed blading defined by hub-toshroud bow profiles
- And more
- Also developed specifications and methodology for Selective Laser Sintering (SLS) process
 - For rotors and stators
 - Good alternative to 5-axis machining
 - Complexity of airfoil shape is not limited by machining (i.e., flank milling vs. point milling)

Mesh and Mesh Detail for FEA

ANSYS Workbench is a trademark of ANSYS, Inc. or its subsidiaries.

Brush Seals Markedly Improve CN300 Performance

<u>CN</u>'s Combination of Advanced Design Features Lead to a State-of-the-Art Unit

Previous ORC system limitations resolved

 New CN300 TGU = hermetic, direct-drive, oil-free, magnetic bearings, refrigerant-cooled, no speed governor

CN300 design goal: Zero maintenance

- Reduced operating/maintenance costs
- Reduced project lifecycle costs
- Maximized TGU efficiency
- CN300 design criteria: Easily customized flow path design
 - For various heat sources, temperatures, and working fluids
 - To maximize turbine efficiency
 - To maximize client project revenue
- Now commercially available

Finished Machined Rotor (one of three used in the CN300 system)

