

2nd International Seminar on ORC Power Systems October 7th & 8th, 2013 De Doelen, Rotterdam, NL

MODELLING OF SCROLL MACHINES: GEOMETRIC, THERMODYNAMICS AND CFD METHODS

<u>M. Morini</u>, C. Pavan, M. Pinelli, E. Romito, A. Suman

Dipartimento di Ingegneria Università degli Studi di Ferrara (Italy)

Introduction

The **ORC systems** are becoming more common for the exploitation of energy sources with low enthalpy and for **very small size** applications (<10 kWel)

The *scroll* fluid machine seems to be suitable for this applications due to:

- the small number of moving parts
- low noise and vibrations

Higher efficiency standards could be achieved by specific studies on:

kinematic

thermodynamic

spiral geometry, flank and axial gaps

play a key role on the final performances

CFD simulations could represent a very "new" useful method

- Geometric comparison between two methods for the design of the scroll spiral profiles
- Thermodynamic comparison of the two scroll compressor by evaluating overall performances
- Implementation of a CFD transient simulation with Dynamic Mesh strategy
- Sensitivity analysis on time discretization in terms of overall performance and fluid dynamic phenomena

Geometrical methods

Method 1*
Non-Linear Method (NLM)

equations governed

by *non-linear coefficients*

Method 2**
 Linear Method (LM)

equations governed

by linear coefficients

* Liu, Y. et al., 2012, "Optimum design of scroll profiles created from involute of circle with variable radii by using finite element analysis", *Mech. Mach. Theory*, 55, pp. 1-17.

Blunier, B. et al., 2006, "Novel Geometrical Model of Scroll Compressors for the Analytical Description of the Chamber Volumes", *ICEC* 2006, 1745.

Method 1 – Non Linear Method (NLM)

Fixed scroll equations

Mobile scroll equations

Coefficients (outer) $a_{out} = a_o + \delta_0 (\phi + \alpha)^k$ $\rho_{out} = a_o (\phi + \alpha) + \frac{\delta_0}{k+1} (\phi + \alpha)^{k+1}$

$$\bullet \text{ Inner spiral } \begin{cases} x_{f,in} = a_{in}\cos\phi + \rho_{in}\sin\phi \\ y_{f,in} = a_{in}\sin\phi - \rho_{in}\cos\phi \end{cases} \begin{cases} x_{m,in} = -x_{f,in} + r_{ob}\sin\theta \\ y_{m,in} = -y_{f,in} - r_{ob}\cos\theta \end{cases}$$

Coefficients (inner) $a_{in} = a_0 + \delta_0 (\phi - \pi + \alpha)^k$ $\rho_{in} = a_o (\phi - \alpha) + \frac{\delta_0}{k+1} [(\phi + \alpha - \pi)^{k+1} - (\pi - 2\alpha)^{k+1}]$

where: a_0 base circumference radius,

 θ orbit angle and r_{ob} orbit radius defined as:

$$r_{ob} = a_0(\pi - 2\alpha) - \frac{\delta_0}{k+1}(\pi - 2\alpha)^{k+1}$$

The coefficients k, δ_0 allow to <u>control</u> the spiral thickness variation:

- ↔ k = distance between the inner and outer spiral
- ↔ δ_0 = variation of the spiral thickness as function of θ

Method 2 – Linear Method (LM)

Outer spiral

Fixed scroll $\begin{cases} x_{f,out} = a_0(\cos\phi + \phi sen\phi) \\ y_{f,out} = a_0(sen\phi - \phi cos\phi) \end{cases}$

Inner spiral

Fixed scroll
$$\begin{cases} x_{f,in} = a_0 [\cos(\phi + \alpha_{i0}) + \phi sen(\phi + \alpha_{i,0})] \\ y_{f,in} = a_0 [sen(\phi + \alpha_{i0}) - \phi cos(\phi + \alpha_{i,0})] \end{cases}$$

Mobile scroll
$$\begin{cases} x_{m,in} = a_0 [\cos(\phi + \alpha_{i0} + \pi) + \phi sen(\phi + \alpha_{i0} + \pi)] + r_{ob} \cos(\theta + 3\pi/2) \\ y_{m,in} = a_0 [sen(\phi + \alpha_{i0} + \pi) - \phi cos(\phi + \alpha_{i0} + \pi)] + r_{ob} sen(\theta + 3\pi/2) \end{cases}$$

Perfectly Meshing Profile* (PMP)**

connect the inner and outer profile. The PMP

influence the spiral geometry, leakage and structural resistance

*** Liu, Y. et al., 2010, "Study on involute of circle with variable radii in a scroll compressor", *Mech. Mach. Theory*, 45, pp. 1520-36.

Comparison

All the *geometric features influence* the *overall performance* of the scroll

Volume ratio = 2.47

The *end-plate* of the scroll is *less*

than the diameter obtained by

the LM method*

Volume ratio = 2.53

The *distance between* the *inner*

and outer spiral is lower than

the NLM method*

Simplified thermodynamic model of an energy balance in an open control volume:

no heat exchange

UNIVERSITY OF FERRARA

- · constant fluid properties at inlet and outlet sections
- · air ideal gas @ standard conditions
- · partial derivatives approximated by finite differences

Same performance, different mass flow rate

CFD analysis – LM numerical model

CFD peculiarity: 2D transient simulations by using a Dynamic Mesh strategy

can reproduce the real operation of the machine through \leftarrow

a sequence of different positions by imposing an angular increment $\underline{\Delta \theta}$

Mesh with *local refinement*

- ✤ 302,000 tetrahedral elements
- ✤ regenerated each time step
- ✤ MAX skewness < 0.47</p>
- min orthogonal q.lty > 0.68

Mesh deformation closely related to the step amplitude $\Delta \theta$ 4 different $\Delta \theta$ • $\Delta \theta = 0.2500^{\circ}$ $\bullet \Delta \theta = 0.1250^{\circ}$ $\bullet \Delta \theta = 0.0625^{\circ}$ $\bullet \Delta \theta = 0.0417^{\circ}$

CFD analysis – Global pressure

DM strategy = *pressure increment* during the scroll orbit

CFD analysis – Local pressure

wide recirculation zones with reversed flow are present at the inlet section

11/14

CFD analysis – Mass flow rate

✤ The $Δθ = 0.1250^\circ$ simulation presents greatest fluctuations

- **\bullet** Every Δ*θ* shows the **same trend** of the mass flow rate
- The global mass flow rate was affected by the flank leakage due to the flank gap (equal to 78 μm for the LM Scroll geometry)

CFD analysis – Flank leakage

Conclusions

- The geometric methods analyzed showed significant differences in geometric structure of the scroll compressor, while the overall performance (in terms of compression ratio, temperature, ...) were the same
- ✤ A CFD method was developed by means of a transient Dynamic Mesh strategy
- The sensitivity analysis showed that overall performances are not influenced by the Δθ, but local mesh deformation can lead to different local fields of pressure and velocity
- CFD simulations allowed the evaluation of time profile of the mass flow rate and pressure fluctuations in every point of the domain
 - $\checkmark\,$ study and optimization of the shape of the spiral profile
 - $\checkmark\,$ study and optimization of the shape and the position of inlet and outlet ducts
 - $\checkmark\,$ analysis and optimization of the noise and vibration of the ORC system