

2D UNSTEADY RANS SIMULATIONS OF AN ORGANIC VAPOR PARTIAL ADMISSION TURBINE

ASME ORC 2013, 2ND INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS

PIOTR KLONOWICZ, DIETER BRÜGGEMANN

Introduction

08.10.2013

Slide 2

Benefits

- in large steam turbines can be applied in control stages
- in small scale machines:
 - increased aspect ratio
 (reduced secondary losses)
 - o reduced tip clearance loss

Drawbacks

- additional losses (pumping, endsector, expansion)
- unforeseen excitation frequencies
- unsuitable for reaction stages
- difficult to obtain reliable CFD results

08.10.2013

Why is it needed?

- Lack of really universal correlative relations for losses
- In order to predict the excitation frequencies

Problems:

- Very time consuming
 - Lack of periodicity
 - Strongly unsteady character at the end-sectors
- Large separations (RANS methods can produce significant errors)

08.10.2013

Simplification of the flow

Examples

- 1. Simulating a stage expanded to full admission
 - o periodicity condition
 - o losses correlation for partial admission
- 2. Reducing a 3D domain into 2D in blade-to-blade plane
 - o symmetry condition
 - $\circ~$ losses correlation for the secondary losses
- 3. Combining the approach from points 1 & 2

Potential problems with 2D approach

- Flow in partial admission has three-dimensional nature
- Stage must have an appropriate geometry
 - o cylindrical hub & shroud surfaces in axial machines
 - o hub & shroud surfaces normal to the rotation axis in radial stages

08.10.2013

Assumptions

- Cyclopentane as the working fluid
- Expansion ratio about 20
- Centrifugal flow direction, naturally suitable for 2D CFD analysis
- 1D mean line calculations
- Cyclopentane regarded as a real gas (REFPROP)

08.10.2013

Slide 6

Blade design

- The geometry of the blades generated by means of Bezier curves (suitable for optimization)
- Nozzle divergent part designed in a way to provide the expansion to the design pressure (e.g. by method of characteristics to obtain uniform flow)
- Rotor blade designed to fit the flow angles and to obtain constant channel width (one can also adopt the vortex flow method)

Zentrum für Energietechn

08.10.2013

- Commercial CFD code Ansys CFX v. 14.0
- Cyclopentane described as a real gas in form of tabularized data (REFPROP)
- Boundary conditions:
 - o inlet total pressure and temperature
 - o outlet average static pressure
- SST k-ω turbulence model
- Second order space discretization
- 30 time steps for one rotor blade pass in unsteady simulations

Zentrum für Eneraietechn

Mesh of the domain

08.10.2013

Slide 9

2D unsteady results (different configurations)

Slide 10

08.10.2013

Slide 11

Loss estimation

Where:

- P internal power of the partial admission stage
- P_T internal power of the stage expanded to full admission
- P_P pumping power of the whole rotor circumference
- P_{S} total sector loss for one sector

Conclusion:

- Casing on both sides reduced not only the pumping loss (by a factor of about 5) but also the end-sector loss by a factor of more than 3!
- The value of the sector loss is comparable with the pumping loss of the whole rotor circumference (not more than 20% difference)

08.10.2013

Combining with 3D steady CFD

ASME ORC 2013

08.10.2013

Conclusions

- Stable 2D blade-to-blade unsteady numerical solutions of flow fields in supersonic turbines working with real gases are possible.
- This approach may be helpful in finding optimal admission sizes.
- The 2D model has obvious limitations and in future should be compared with its 3D equivalent to investigate its reliability.
- Different stage specifications have to be checked such as different blade pitches, different chord sizes and various blade angles.
- The presented design shows a promising performance which in further work will be compared with equivalent centripetal stages.

08.10.2013

Slide 14

Thank you!

