2D UNSTEADY RANS SIMULATIONS OF AN ORGANIC VAPOR PARTIAL ADMISSION TURBINE

ASME ORC 2013, 2ND INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS

PIOTR KLONOWICZ, DIETER BRÜGGMANN
Work principle of partial admission

certain part of the circumference is inactive (covered)
Pros & cons of partial admission

Benefits
- in large steam turbines can be applied in control stages
- in small scale machines:
 - increased aspect ratio (reduced secondary losses)
 - reduced tip clearance loss

Drawbacks
- additional losses (pumping, end-sector, expansion)
- unforeseen excitation frequencies
- unsuitable for reaction stages
- difficult to obtain reliable CFD results
CFD applied to partially admitted stages

Why is it needed?
- Lack of really universal correlative relations for losses
- In order to predict the excitation frequencies

Problems:
- Very time consuming
 - Lack of periodicity
 - Strongly unsteady character at the end-sectors
- Large separations (RANS methods can produce significant errors)
Simplification of the flow

Examples
1. Simulating a stage expanded to full admission
 - periodicity condition
 - losses correlation for partial admission
2. Reducing a 3D domain into 2D in blade-to-blade plane
 - symmetry condition
 - losses correlation for the secondary losses
3. Combining the approach from points 1 & 2

Potential problems with 2D approach
- Flow in partial admission has three-dimensional nature
- Stage must have an appropriate geometry
 - cylindrical hub & shroud surfaces in axial machines
 - hub & shroud surfaces normal to the rotation axis in radial stages
A case study

Assumptions

- Cyclopentane as the working fluid
- Expansion ratio about 20
- Centrifugal flow direction, naturally suitable for 2D CFD analysis
- 1D mean line calculations
- Cyclopentane regarded as a real gas (REFPROP)
Blade design

- The geometry of the blades generated by means of Bezier curves (suitable for optimization)

- Nozzle divergent part designed in a way to provide the expansion to the design pressure (e.g. by method of characteristics to obtain uniform flow)

- Rotor blade designed to fit the flow angles and to obtain constant channel width (one can also adopt the vortex flow method)
The numerical model

- Commercial CFD code Ansys CFX v. 14.0
- Cyclopentane described as a real gas in form of tabularized data (REFPROP)
- Boundary conditions:
 - inlet total pressure and temperature
 - outlet average static pressure
- SST $k-\omega$ turbulence model
- Second order space discretization
- 30 time steps for one rotor blade pass in unsteady simulations
Mesh of the domain

- Computational domain (600,000 nodes)
- Refined rotor mesh (1 mln nodes)
- Refined stator mesh (2 mln nodes)
- Less than 1% change
2D unsteady results (different configurations)
Efficiency vs. admission
Loss estimation

Superposition principle

\[
\begin{align*}
P &= P_T - P_P (1 - \varepsilon) - P_S \\
P &= P_T - P_P (1 - \varepsilon) - 2P_S
\end{align*}
\]

for single sector admission

for double sector admission

Where:
- \(P \) – internal power of the partial admission stage
- \(P_T \) – internal power of the stage expanded to full admission
- \(P_P \) – pumping power of the whole rotor circumference
- \(P_S \) – total sector loss for one sector

Conclusion:
- Casing on both sides reduced not only the pumping loss (by a factor of about 5) but also the end-sector loss by a factor of more than 3!
- The value of the sector loss is comparable with the pumping loss of the whole rotor circumference (not more than 20% difference)
Combining with 3D steady CFD

Optimal admission for various power outputs

Turbine isentropic efficiency [-]

Admission size [-]

- 30% of \(P_{\text{referential}} \)
- 220% of \(P_{\text{referential}} \)
Conclusions

- Stable 2D blade-to-blade unsteady numerical solutions of flow fields in supersonic turbines working with real gases are possible.

- This approach may be helpful in finding optimal admission sizes.

- The 2D model has obvious limitations and in future should be compared with its 3D equivalent to investigate its reliability.

- Different stage specifications have to be checked such as different blade pitches, different chord sizes and various blade angles.

- The presented design shows a promising performance which in further work will be compared with equivalent centripetal stages.
Thank you!