

# Design, modeling and experimentation of a reversible HP/ORC prototype

Olivier Dumont & co-workers : S. Quoilin, V. Lemort

Thermodynamics Laboratory, University of Liège

October 8th 2013

ASME ORC 2013, Rotterdam









## Introduction Description of the HP/ORC unit



Reversible HP/ORC unit = Heat pump with the ability to work as an ORC

Almost the same components as residential heat pump (+4 way valve and pump)

Possibility to produce "green" electricity















## Design Direct heating mode















## System sizing Sizing – Introduction



Sizing difficulties because of the large difference between ORC and HP :
Different temperature levels → different flows
→ different pressure levels

Sizing based on the ORC mode because of : - The higher thermal power (62 kW versus 7 kW) - More functionning time

## System sizing Sizing – Nominal conditions

LABORATOIRE DE

DYNAMIQUE



|            | ORC non                  | ninal conditions | HP nominal conditions |                           |  |
|------------|--------------------------|------------------|-----------------------|---------------------------|--|
|            | T <sub>ev</sub> [°C]     | 90*              | Q <sub>ev</sub> [kW]  | 8**                       |  |
| Evaporator | ΔT <sub>w,h</sub> [°C]   | 25               | m <sub>w,h</sub>      | = m̀ <sub>w,h</sub> (ORC) |  |
|            | Pinch point [°C]         | 5                | Pinch point [°C]      | 5                         |  |
|            | Overheating [°C]         | 10               | Overheating [°C]      | 3                         |  |
| Condenser  | T <sub>wc,su</sub> [°C]  | 15               | T <sub>cd</sub> [°C]  | 60 (for DHW production)   |  |
|            | T <sub>w,c,ex</sub> [°C] | 20               | Pinch point [°C]      | 7,5                       |  |
|            | Pinch point [°C]         | 7,5              | Sub-cooling [°C]      | 2                         |  |
|            | Sub-cooling [°C]         | 2                | ΔT <sub>wh</sub> [°C] | 5                         |  |





## System sizing Modeling – heat exchangers



- Evaporator and condenser = plate heat exchangers described by a 3-zone model.
- Heat transfer
  - ✓ 2 convective resistances in series
  - ✓ Appropriate heat transfer and pressure drop correlations have been used [1-3].
  - Average value over the 2-phase zone
  - Total heat transfer area = sum zones areas
- Pressure losses
  - ✓ Frictional losses
  - ✓ Two-phase zone: integration versus x.
  - ✓ Only on the vapor side



$$\frac{1}{U} = \frac{1}{h_f} + \frac{1}{h_{sf}}$$

$$\bar{h_{tp}} = \int_{0}^{1} h_{tp} dx$$

$$A_l + A_{tp} + A_v = (N_p - 2) \cdot L \cdot W$$

 $\Delta p_{tp} = \int \frac{2 \cdot f_{tp} \bar{v} \cdot G^2}{D_h} dx \cdot L$ 

### System sizing Selection – Compressor / expander

VERSITE DE LIEI





Choosing the adapted expander technology [4]



## System sizing Modelling – Compressor / expander



#### • Compressor = manufacturer correlations [5]

 $\dot{W}_{cp} = C_0 + C_1 \cdot T_{ev} + C_2 \cdot T_{cd} + C_3 \cdot T_{ev}^2 + C_4 \cdot T_{ev} \cdot T_{cd} + C_5 \cdot T_{cd}^2 + C_6 \cdot T_{ev}^3 + C_7 \cdot T_{cd} \cdot T_{ev}^2 + C_8 \cdot T_{ev} \cdot T_{cd}^2 + C_9 \cdot T_{cd}^3$ 

 $\dot{M}_{cp} = C_{m0} + C_{m1} \cdot T_{ev} + C_{m2} \cdot T_{cd} + C_{m3} \cdot T_{ev}^2 + C_{m4} \cdot T_{ev} \cdot T_{cd} + C_{m5} \cdot T_{cd}^2 + C_{m6} \cdot T_{ev}^3 + C_{m7} \cdot T_{cd} \cdot T_{ev}^2 + C_{m8} \cdot T_{ev} \cdot T_{cd}^2 + C_{m9} \cdot T_{cd}^3$ 

Ambient losses neglected:

$$h_{ex,cp} = h_{su,cp} + \frac{\dot{W}_{cp}}{\dot{M}_{cp}}$$

#### Expander = semi-empirical model [6]



| Parametres                          | Values                  |  |  |
|-------------------------------------|-------------------------|--|--|
| $\dot{V}_s$ [m <sup>3</sup> ]       | 98,04. 10 <sup>-6</sup> |  |  |
| R <sub>v</sub> [-]                  | 2,9                     |  |  |
| A <sub>leak</sub> [m <sup>2</sup> ] | 4,5.10 <sup>-7</sup>    |  |  |
| Au <sub>su,n</sub> [W/K]            | 30                      |  |  |
| Au <sub>ex,n</sub> [W/K]            | 20                      |  |  |
| Au <sub>amb</sub> [W/K]             | 10                      |  |  |
| α[-]                                | 0,23                    |  |  |
| <i>₩</i> <sub>loss_0</sub> [W]      | 120                     |  |  |
| D <sub>ex</sub> [m]                 | 0,0056                  |  |  |

Calibrated on experimental data

Connected to the grid (fz = cst = 50 Hz)





| (         | Compressor           | Α     | В     | С     |
|-----------|----------------------|-------|-------|-------|
| Swej      | pt volume [cm³]      | 80    | 100   | 120   |
| Heat pump | Power consummed [W]  | 2,687 | 3,211 | 4,276 |
|           | ε <sub>s</sub> [%]   | 59,8  | 60    | 50    |
|           | η <sub>abs</sub> [%] | 52,9  | 56    | 57    |
|           | COP [-]              | 2,4   | 2,4   | 2,1   |
| ORC       | Power generated [W]  | 4,013 | 4,733 | 5,718 |
|           | ε <sub>s</sub> [%]   | 67,8  | 68    | 68,2  |
|           | η <sub>abs</sub> [%] | 52,58 | 55,31 | 58,3  |
|           | η <sub>orc</sub> [%] | 7,5   | 7,6   | 7,6   |

The size of the scroll machine (which defines the net power of the system, both in HP and ORC mode) results from a tradeoff between winter and summer conditions. This can only be optimized using yearly simulations,



### System sizing Modeling – Other components



Pump (variable speed)

High pressure drop and low volume flow  $\rightarrow$  volumetric pump (Plunger)

Criteria : Tighness and relatively high efficiency

 $\varepsilon_s = 0,5$ 



Absorber (simple linear model) [7] :

$$\dot{Q}_{abs} = S_{abs} (-26, 2-1, 22 T_{amb} - 1, 783 \Delta T_{abs} + 0, 9034 I)$$
  
$$\eta_{abs} = \frac{\dot{Q}_{abs} \eta_{glazing}}{I}$$

Storage [8] :

$$Q_{stock} = 4, 2. V_{Stock}^{0,47}. (T_{stock} - T_{amb})$$



# Yearly simulation of the system Off-design performance



For a given configuration (fluid, expander size, recuperator or not), evaluation of the system performance over a wide range of evaporation/condensation temperatures (ORC and HP).

> Establishment of performance curves from these simulations as a function of the system configuration and of the temperature levels.

> > Implementation of these curves in the yearly simulation model, which optimally switches between the three operating modes depending on the weather and of the heat demand for the given month.





## System sizing Sizing – Fluid selection



- Low cost
- Wide availability
- Low specific volume
- High thermal conductivity
- Acceptable pressure levels
- High adiabatic enthalpy drop
- High specific heat
- High thermal stability

- Low viscosity
- Non-corrosive
- Non-toxic
- Easily recyclable
- Material and lubricating oil compatibles
- With a melting point lower than the lowest ambient temperature throughout the year

| Fluid  | W_net<br>[kWh] | Improvement | ODP | GWP | Toxicity | Flammability | Conclusion                        |
|--------|----------------|-------------|-----|-----|----------|--------------|-----------------------------------|
| R124   | 5079.42        | 45.28%      | -   | -   | +        | +            | Environmental reasons             |
| R600   | 4239.98        | 21.27%      | +   | +   | +        | -            | Flammability                      |
| R152a  | 3969.01        | 13.52%      | +   | +   | +        | +/-          | Flammability                      |
| R600a  | 3814.85        | 9.11%       | +   | +   | +        | -            | Flammability                      |
| R134a  | 3496.27        | 0.00%       | +   | -   | +        | +            | Best compromise                   |
| R245fa | 3349.76        | -4.19%      | +   | -   | +/-      | +            | Toxicity + low W_net              |
| R123   | 3105.28        | -11.18%     | -   | -   | -        | +            | Environmental reasons + low W_net |



# Yearly simulation of the system Compressor selection





Electrical energy produced over one year reaches 4030 kWh and the monthly efficiency of the cycle varies between 4.3 and 6.4% The monthly COP of the heat pump varies from 2.6 to 3.3, for a yearly electrical energy consumption of 527.3 kWh. The direct heating mode provides 62.3 kWh of heat throughout the year.









## Experimental results Best efficiency points





| $comp = \frac{\dot{m}_r (h_{\text{comp,ex,s}} - W_{comp,ex,s})}{W_{comp,ex,s}}$ | $\frac{h_{comp,su}}{m}$ $\varepsilon_{is,exp} = \frac{1}{m}$ | $\frac{W_{exp,el}}{n_r(h_{comp,ex,s} - h_{comp,su})}$ |
|---------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| ρ N Vs                                                                          | $\eta_{ORC} = -$                                             | Ż <sub>ev</sub>                                       |
|                                                                                 | HP                                                           | ORC                                                   |
| P <sub>comp,el</sub> [kW]                                                       | 3.4                                                          | 3.1                                                   |
| Q <sub>ev</sub> [kW]                                                            | 12                                                           | 44                                                    |
| Q <sub>cd</sub> [kW]                                                            | 14.4                                                         | 38                                                    |
| P <sub>pump,el</sub> [W]                                                        | -                                                            | 600                                                   |
| ε <sub>comp/exp,is</sub> [-]                                                    | 0,56                                                         | 0.64                                                  |
| T <sub>ev</sub> [°C]                                                            | 16                                                           | 78                                                    |
| T <sub>cd</sub> [°C]                                                            | 52                                                           | 22                                                    |
| P <sub>cd</sub> [bar]                                                           | 13.7                                                         | 6                                                     |
| P <sub>ev</sub> [bar]                                                           | 5.1                                                          | 25.7                                                  |
| COP / η <sub>ORC</sub> [-]                                                      | 4.2                                                          | 5.7 %                                                 |

Performances lower than theory because : 1) low expander efficiency, 2) non thermally insulated pipes, 3) limited power of the boiler, 4) Huge pressure drop on the four way valve 5) necessary subcooling to avoid pump cavitation











## Conclusions and next steps



- Sizing and simulation of a reversible HP/ORC system
  - Yearly produced electrical energy = 4030 kWh
  - Monthly efficiency of the ORC = [4.3% 6.4%]
  - Monthly COP of the heat pump = [2.6 3.3]
- First experimental results
  - ORC →  $\eta_{ORC} = 5.7 \%$
  - HP  $\rightarrow$  COP = 4.2
- Potential means of improvements
- Next steps:
  - Monitor the prototype installed in a real building.
  - More detailed simulation / validation of the model of components with experimental data.





# Thank you!

Further information:



More experimental results and model validation at turboexpo conference next year <sup>25</sup>



# Bibliography



- [1] Thonon B. (1995). Recent research and developments in plate heat exchangers. *Fuel and Energy Abstracts, 36,* 361. doi:10.1016/0140- 6701(95)96878-G
- [2] Hsieh, Y. Y., & Lin, T. F. (2002). Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. *International Journal of Heat and Mass Transfer*, 45(5), 1033-1044. doi:16/S0017-9310(01)00219-8
- [3] Kuo, W. S., Lie, Y. M., Hsieh, Y. Y., & Lin, T. F. (2005). Condensation heat transfer and pressure drop of refrigerant R-410A flow in a vertical plate heat exchanger. *International Journal of Heat and Mass Transfer*, *48*(25-26), 5205 -5220.doi:16/j.ijheatmasstransfer.2005.07.023
- [4] Sustainable Energy Conversion Through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar applications, Sylain Quoilin, 2011
- [5] European Standards (1999), Refrigerant compressors Rating conditions, tolerances and presentation of manufacturer's performance data, DIN EN 12900
- [6] Contribution to the characterization of scroll machines in compressor and expander modes, Vincent Lemort, 2008
- [7] Thermal losses of heat storage: http://herve.silve.pagesperso-orange.fr/bilan\_th.htm
- [8] Innogie ApS, <u>http://www.innogie.dk</u>