EXPERIMENTAL INVESTIGATIONS OF HEAT TRANSFER CHARACTERISTICS AND THERMAL STABILITY OF SILOXANES

2nd International Seminar on ORC Power Systems, Rotterdam (Netherlands)

Florian Heberle, Markus Preißinger, Theresa Weith and Dieter Brüggemann
Introduction
Siloxanes as working fluids in ORC Power Systems

- Siloxanes are potential working fluids for ORC power systems.
- Advantages: long-term experiences, low toxicity and GWP = 0.
- Mainly used as ORC working fluids for high-temperature heat sources like biomass-fired power plants or waste heat recovery units.

Experimental investigation

Heat transfer coefficient
- Comparison to correlations
- Economic evaluation (pure fluids and mixtures)

Thermal stability
- Maximum process temperatures
- Decomposition products
Introduction
Investigated working fluids

- Hexamethyldisiloxane (MM); n = 0
- Octamethyltrisiloxane (MDM); n = 1
- Decamethyltetrasiloxane (MD$_2$M); n = 2

Fluid properties:

<table>
<thead>
<tr>
<th>Structural formula</th>
<th>T_{crit} (°C)</th>
<th>p_{crit} (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM $\text{C}6\text{H}{18}\text{OSi}_2$</td>
<td>245.6</td>
<td>19.4</td>
</tr>
<tr>
<td>MDM $\text{C}8\text{H}{24}\text{O}_2\text{Si}_3$</td>
<td>290.4</td>
<td>14.2</td>
</tr>
<tr>
<td>MD2M $\text{C}{10}\text{H}_{30}\text{O}_3\text{Si}_4$</td>
<td>326.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Heat transfer characteristics
Experimental setup

- $p_{max} = 25$ bar
- $T_{max} = 260$ °C

Test conditions:
- $\dot{q} = 8 - 18$ kW/m2
- $G = 50 - 400$ kg/(m2s)
- Electrical heated steel pipe (DC power)
- Length: 5 m
Heat transfer characteristics
Evaporation – Test section

Data reduction:

\[h_j = \frac{\dot{q}}{T_{W,i} - T_{\text{sat}}(p)} \]

\[T_{W,i} = \bar{T}_{W,o} + \frac{\dot{q}_i}{4\lambda} \cdot (r_o^2 - r_i^2) + \frac{\dot{q}_i}{2\lambda} \cdot \ln \left(\frac{r_i}{r_o} \right) \cdot r_o^2 \]

\[\bar{T}_{W,o} = \frac{T_{TC,\text{top}} + 2 \cdot T_{TC,\text{middle}} + T_{TC,\text{bottom}}}{4} \]
Results

Variation of mass flux density – MM

- h increases with increasing mass flux density.
- h decreases with increasing vapour quality.

Graph:
- Heat transfer coefficient (kW/m2K) vs. vapour quality (-)
- Vapour quality G (kg/(m2s))
- Heat transfer coefficient h increases with increasing mass flux density.
- Heat transfer coefficient h decreases with increasing vapour quality.

Legend:
- G (kg/(m2s))
 - 50
 - 100
 - 200
 - 300
 - 400

Additional Information:
- MM
- $p = 9$ bar;
- $q = 8$ kW/m2
Results
Variation of heat flux density – MM

- No significant influence of heat flux density
- h decreases with increasing vapour quality

Heat transfer coefficient (kW/m2K) vs. vapour quality (-)

$G = 200 \text{ kg/(m}^2\text{s)}$; $T_{sat} = 220 ^\circ \text{C}$
Results
Variation of examined working fluid – statistical and systematic uncertainties

- Different behaviour of MM and MDM depending on vapour quality
- Statistical uncertainties (5 repetitions)
- Systematic uncertainties ($\Delta A/A; \Delta P/P$, $\Delta T_{W,o}/T_{W,o}$, $\Delta p_{sat}/p_{sat}$)

$T_{sat} = 198 \, ^\circ C; \, G = 200 \, \text{kg/(m}^2\text{s}); \, q = 15.9 \, \text{kW/m}^2$
Results
Comparison to correlations

Experimental Data
Kandlikar (1998)
Saitoh et al. (2007)

MM; G = 200 kg/(m²s); T\text{\textit{sat}} = 198 °C; q = 15.8 kW/m²
Results
Comparison to correlations

Experimental Data
Kandlikar (1998)
Saitoh et al. (2007)

MM; $G = 200 \text{ kg/(m}^2\text{s)}$; $T_{\text{sat}} = 198 \degree \text{C}$; $q = 15.8 \text{ kW/m}^2$
Results
Comparison to correlations

- Experimental Data
- Kandlikar (1998)
- Saitoh et al. (2007)

MDM; $G = 200 \text{ kg/(m}^2\text{s)}; \ T_{\text{sat}} = 198 ^\circ \text{C}; \ q = 15.8 \text{ kW/m}^2$
Comparison to correlations

Experimental Data
Kandlikar (1998)
Saitoh et al. (2007)

MDM; \(G = 200 \text{ kg/(m}^2\text{s)} \); \(T_{\text{sat}} = 198^\circ\text{C} \); \(q = 15.8 \text{ kW/m}^2 \)
Results
Comparison to correlations – working fluid: MM

- All measured local h
- Mean relative deviation (Kandlikar) 25.1%
- Saitoh et al. 49.0%
- Mean relative deviation (MDM – Kandlikar) 40.9%
Heat transfer measurements
Main results

- Heat transfer coefficients are measured for process temperatures up to 250 °C.
- Empirical model of Kandlikar shows a good agreement to the experimental data.
Thermal stability
Experimental setup

Test conditions:
- $p_{\text{max}} = 30 \text{ bar}$
- $T_{\text{max}} = 500 \, ^\circ C$

- $t = 72 \, \text{h}$
- $T = 240 - 420 \, ^\circ C$
- Electrical heated by heating wire
- Analysed by gas chromatography/mass spectroscopy
Results
Liquid phase, 360 °C, 144 h

- Fluid: Wacker® AK 0.65
- Purity: > 97 mass-%
- Formation of higher chained siloxanes in accordance to Dvornic, Gelest, Inc.

![Graph showing counter vs. time](image)
Results
Gas phase, 72 h

- Averaged molar concentration before tests: 99.4 mol-%
- Formation of methane and ethane in accordance to Manders and Bellama, Journal of Polymer Science, 1985
Conclusions and Future work

- Heat transfer and thermal stability measurements were carried out for selected siloxanes.
- The correlation of Kandlikar shows the best agreement to experimental data.
- No significant amount of decomposition products for heat transfer test conditions.
- Heat transfer characteristics of the mixture MM/MDM and MM/MDM/MD$_2$M.
- Investigation of enhanced tubes and alternative working fluids.
- Long-term and dynamic tests concerning thermal stability.
Acknowledgements

The authors gratefully acknowledge financial support from

DFG

“Fluid mixtures for efficiency increase of Organic Rankine Cycles in selected applications” (Grant no. 1713/12-1 and -2)

TAO

Partial financing of the thermal stability test rig

WACKER

Free provision of Wacker® AK 0.65
Thank you
www.zet.uni-bayreuth.de

Florian Heberle, Markus Preißinger, Theresa Weith and Dieter Brüggemann
Heat transfer characteristics
Evaporation – Test section

Data reduction:

\[x_i = \frac{h_i - h'}{h'' - h'} \quad i = 1 - 10 \]

\[h_i = h_{i-1} + \Delta h = h_{i-1} + \frac{P_i}{m_{TF}} \]

\[h_0 = h(T_{sat} - 0.5K) \quad \rightarrow \text{subcooled} \]
Results
Variation of saturation pressure - MM

MM

\[G = 200 \text{ kg/(m}^2\text{)}; \]
\[q = 15.8 \text{ kW/m}^2 \]

\begin{align*}
\text{heat transfer coefficient (W/m}^2\text{K)} \\
\text{vapour quality (-)} \\
\text{p}_{\text{sat}} \text{ (bar)} \\
\end{align*}

0.0 0.2 0.4 0.6 0.8 1.0
0 1000 2000 3000 4000 5000 6000 7000

heat transfer coefficient (W/m2K)
vapour quality (-)
\(p_{\text{sat}} \) (bar)

- 5.8
- 7.75
- 9
- 13

\(G = 200 \text{ kg/(m}^2\text{)}; \)
\(q = 15.8 \text{ kW/m}^2 \)
Results
Variation of examined working fluid

$T_{sat} = 220 \, ^\circ C$;
$G = 200 \, kg/(m^2 \cdot s)$;
$q = 15.9 \, kW/m^2$
Results
Comparison to correlations – Model of Kandlikar

\[
htc_{tp} = \begin{cases}
htc_{tp,\text{nbd}} \\
htc_{tp,\text{cbd}}
\end{cases}
\]

\[
htc_{tp,\text{nbd}} = 0.6683 \cdot Co^{-0.2} \cdot (1 - x)^{0.8} \cdot htc_{LO} + 1058 \cdot Bo^{0.7} \cdot (1 - x)^{0.8} \cdot F_{fl}
\cdot htc_{LO}
\]

\[
htc_{tp,\text{cbd}} = 1.136 \cdot Co^{-0.9} \cdot (1 - x)^{0.8} \cdot htc_{LO} + 667.2 \cdot Bo^{0.7} \cdot (1 - x)^{0.8} \cdot F_{fl} \cdot htc_{LO}
\]

\[
htc_{LO} = \frac{(\zeta/2) (Re_{LO} - 1000) \cdot Pr_l}{1,0 + 12,7 \cdot \sqrt{\zeta/2 (Pr_{l}^{2/3} - 1)}} \cdot \left(\frac{\lambda_l}{d_i}\right)
\]

\[
Bo = \frac{\dot{q}}{G \cdot \Delta h} = \frac{A_{cs} \cdot \dot{q}}{\dot{m} \cdot (h'' - h')}
\]

\[
Co = \left(\frac{\rho_g}{\rho_l}\right)^{0.5} \left(\frac{1 - x}{x}\right)^{0.8}
\]
Results

Comparison to correlations – Model of Saitoh et al.

\[htc_{tp} = F htc_l + S htc_{pool} \]

\[F = 1 + \left(\frac{1}{x} \right)^{1.05} + (1 + We_g^{-0.4}) \]

\[S = 1/1 + (Re_{tp} \cdot 10^{-4})^{1.405} \]

\[htc_l = 0.223 \frac{\lambda_l}{D} \left(\frac{G(1-x)D}{\eta_l} \right)^{0.8} \cdot \left(\frac{c_p l \eta_l}{\lambda_l} \right)^{0.8} \]

\[htc_{pool} = 207 \frac{\lambda_l}{d_b} \left(\frac{q d_b}{\lambda_l T_l} \right)^{0.745} \cdot \left(\frac{\rho g}{\rho_l} \right)^{0.581} \cdot Pr_l^{0.533} \]
Results
Comparison to correlations – working fluid: MM

- Measured local htc
- Mean relative deviation (Kandlikar) 25.1%
- Saitoh et al. 49.0%
Results
Homogenous temperature profile

![Graph showing homogenous temperature profile](image)

inner wall temperature (°C) vs. length of test section (m)

- t_1
- t_2
- t_3
- t_4
Results

![Graph showing inner wall temperature vs. length of test section for MM top and MM bottom.](image)

- **MM top**
- **MM bottom**

inner wall temperature (°C) vs. length of test section (m)
Results
Results
Flow regimes - MM

The graph illustrates the transition between different flow regimes based on the mass flux G and the position x.

- **Annular** flow is characterized by a single continuous liquid film on the wall, with no gas phase visible.
- **Stratified** flow shows distinct layers of liquid and gas, with clear boundaries between them.
- **Stratified wavy** flow indicates a dynamic interface with waves, typical of unstable stratified flows.
- **Intermittent** flow represents periods of liquid and gas, often observed in two-phase flows.
- **Mist flow** occurs with small droplets dispersed in the gas phase, resembling a misty appearance.

The graph uses different markers and colors to distinguish between the various flow regimes, providing a clear visual representation of the transition conditions.
Results
Flow regimes – MDM

![Graph showing flow regimes](image-url)
Results
Fluid properties

<table>
<thead>
<tr>
<th></th>
<th>p_{sat} (bar)</th>
<th>p_{red}</th>
<th>ρ_v (kg/m3)</th>
<th>ρ_l / ρ_v</th>
<th>σ (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>9.03</td>
<td>0.47</td>
<td>53.54</td>
<td>10.05</td>
<td>0.0154</td>
</tr>
<tr>
<td>MDM</td>
<td>2.90</td>
<td>0.21</td>
<td>20.82</td>
<td>29.44</td>
<td>0.0166</td>
</tr>
</tbody>
</table>

- Higher vapour density for MM \rightarrow lower vapour velocity at same mass flux.
- Nucleate dominates at low vapour qualities, caused by low surface tension and liquid-to-vapour density ratio.
- Lower surface tension increase the probability of liquid entrainment in the vapour core.
- Suppression of nucleate boiling is delayed by higher vapour density (lower velocity).
Thermal stability
Temperature distribution

![Diagram with graphs showing temperature distribution](image)

- **a)**
- **b)**
- **c)**
Outline

Test procedure

1. [Diagram with N2 and 15 min]

2. [Diagram with Tauchrohr]

3. [Diagram with Vakuumpumpe]

4. [Diagram with empty structure]

Test procedure
Outline
Dynamic test rig