Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Harald S. Kunte, Joerg R. Seume

Outline

1. Motivation
2. Thermodynamic analysis
3. Design of the impulse turbine
4. Conclusion/Outlook
Objectives

Goals of automobile manufacturers:

• Reduction of fuel consumption
• Achieving emission targets
 → Increase efficiency of the power-train

Approach:
Energy recovery from the exhaust gas using an Organic Rankine Cycle (high percentage of exergy) (Span et al. 2011)
Thermodynamic model and limitations

Thermodynamic analysis

Model:
- Investigation of the thermodynamic cycle for the design point
- Fluid properties: NIST Database 23 (Lemmon et al.)
- Parameter study (e.g. max. pressure, min. pressure)
- Supposed turbine efficiency: 70%

Truck application; diesel-engine

<table>
<thead>
<tr>
<th></th>
<th>(m_{eg} [\text{kg/s}])</th>
<th>(T_{eg} [\text{K}])</th>
<th>(\Delta H_{T,eg;343K} [\text{kJ/s}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design point (DP)</td>
<td>0.249</td>
<td>615.15</td>
<td>78.5</td>
</tr>
<tr>
<td>Part-load (PL)</td>
<td>0.126</td>
<td>569.15</td>
<td>31.6</td>
</tr>
<tr>
<td>Overload (OL)</td>
<td>0.338</td>
<td>630.15</td>
<td>108.4</td>
</tr>
</tbody>
</table>

Limitations of the ORC (predefined)

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. pressure</td>
<td>40 bar</td>
</tr>
<tr>
<td>Min. pressure</td>
<td>0.5 bar</td>
</tr>
<tr>
<td>Min. (\Delta T) heat-exchangers</td>
<td>20 K</td>
</tr>
<tr>
<td>Min. (T) of condensation</td>
<td>343 K</td>
</tr>
</tbody>
</table>
Results of the thermodynamic analysis (DP)

- Ethanol promises highest power output
- Superheating decreases power output for ethanol

Kunte and Seume (2013)
Reason for negative effect of superheating (DP)

Superheated fluid

- ORC-Cycle
- Condensation line
- Exhaust gas temperature

Fluid without superheating

High efficiency of the stator causes an almost isentropic expansion in the nozzles:

- In Case of thermal equilibrium
 - → Risk of erosion due to droplets
 - → Temperature must be raised to avoid erosion
 - → Decreased power output

In reality:

Homogeneous nucleation effects delay droplet formation
Supersaturation of the vapour phase according to Hale (1988)

Definition of saturation (WA (2005)):

\[S = \frac{p_{VAP}}{p_{VAP,s}(T)} \]

S=1: saturated
S>1: supersaturated

Approach by Hale (1988):

\[\ln S = \left(\frac{36\pi}{\Omega} \right)^{1/2} x_0 \delta_0 \left(\frac{T_c}{T} - 1 \right)^{3/2} \]
Effect of supersaturation according to Hale (1988)

Benefits of supersaturation vs. equilibrium condensation ($n_T=0.7$):

<table>
<thead>
<tr>
<th></th>
<th>ΔP [%]</th>
<th>ΔP [W]</th>
<th>P_{Wilson} [kW]</th>
<th>Π [-]</th>
<th>T_{in} [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>+1.18</td>
<td>+118</td>
<td>10.20</td>
<td>49.1</td>
<td>522.2</td>
</tr>
<tr>
<td>PL</td>
<td>+0.62</td>
<td>+19</td>
<td>3.09</td>
<td>32.5</td>
<td>496.6</td>
</tr>
<tr>
<td>OL</td>
<td>+0.84</td>
<td>+127</td>
<td>15.13</td>
<td>39.2</td>
<td>508.0</td>
</tr>
</tbody>
</table>

Potential and uncertainties:

+ The expansion rate is no factor in this model.
 High expansion rates, like in laval-nozzles, promises considerably higher supersaturation (chosen model is very conservative) (Treffinger (1994))

+ The possible supersaturation for ethanol is higher than predicted by the model (vapour phase is stabilized by molecular associations) (WA (2005))

− Homogeneous nucleation requires very clean fluids (Bier et al. (1995))

− Uncertainties by the model itself (Treffinger (1994))
Impulse turbine

Benefits of the axial impulse turbine:
- High efficiency at high pressure ratios (Verneau (1987))
- Acceptable rotational speed (compared to other turbine designs)
- Single stage → compact
- Wide operating range due to variable partial admission

Stator:
Degree of reaction $R = \frac{\Delta h_{\text{static,Rotor}}}{\Delta h_{\text{static,stage}}} = 0$

The complete expansion takes place in the stator.

Rotor:
The rotor redirects the flow without a change of static pressure or the relative velocity ($|w_1| = |w_2|$)
Supersonic blade design

Stator; Laval-nozzles:
- Subsonic flow up to the throat \(\uparrow 1 \)
- Sonic velocity at the throat
- Supersonic flow in the divergent nozzle part \(\uparrow 2 \)

Flow direction

Kunte and Seume (2013)

Rotor; Impulse blades:
Sharp leading and trailing edges minimize supersonic shock losses

Kunte and Seume (2013)
Flow control

- Low mass flow:
- High mass flow:

Kunte and Seume (2013)

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion
Turbine design parameters and CFD

Preliminary design based on a model by Aungier (2006)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Diameter</td>
<td>65.2 mm</td>
</tr>
<tr>
<td>Rotational speed at DP</td>
<td>105,000 rpm</td>
</tr>
<tr>
<td>Partial Admission at DP(OL)</td>
<td>20 % (40 %)</td>
</tr>
</tbody>
</table>

CFD-Modell:
- Ansys CFX 13.0
- Steady-state calculation
- Frozen rotor interface
- 18 million cells (with full radial resolution)
- Q3D-calculations for the calculation of the operating curve (reduced radial resolution)
Performance prediction for the truck application

<table>
<thead>
<tr>
<th></th>
<th>DP</th>
<th>PL</th>
<th>OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{m} [kg/s]</td>
<td>0.055</td>
<td>0.019</td>
<td>0.087</td>
</tr>
<tr>
<td>p_{in} [bar]</td>
<td>39.8</td>
<td>26.3</td>
<td>31.8</td>
</tr>
<tr>
<td>P_{aero} [kW]</td>
<td>8.5</td>
<td>1.9</td>
<td>14.1</td>
</tr>
<tr>
<td>n_{is} [-]</td>
<td>0.58</td>
<td>0.44</td>
<td>0.65</td>
</tr>
</tbody>
</table>

DP: Design point
PL: Part-load
OL: Overload
Design of a Partial Admission Impulse Turbine for an Automotive ORC Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

Design of the prototype

1. Turbine stator
2. Turbine rotor
3. Aerodynamically lubricated seals
4. Spindle ball bearing
5. Generator
6. Water cooling jacket
Conclusions

- Working fluid: Ethanol promises the highest power output for the considered application.
- An increase in power compared to thermal equilibrium is possible due to supersaturation in the preliminary performance prediction (Wilson line).
- The axial impulse turbine is suitable for the utilization as an expansion turbine for an automotive ORC (predicted efficiencies):
 - Design point: 58%
 - Part-load: 44%
 - Overload: 65%
- Coverage of the performance range requires variable partial admission
- Predicted rotational speeds allow direct coupling of turbine with the generator for compact design.

Outlook

- Detailed aerodynamic investigation with design improvement
- Prototyping for truck application
- Experimental verification
- Investigation of homogeneous nucleation with consideration of the expansion rate (e.g. Treffinger 1994) might further improve performance
Thank you for your attention!

Thanks to:
References

Bier K.; Ehrler F.; Treffinger P.; Wright W.; Spontane Kondensation übersättigter reiner Dämpfe in Nebelkammern; VDI-Fortschrittsbericht; Reihe 7; Nr. 278; VDI-Verlag; 1995

Hale B.N.; Scaled Models for Nucleation; Published in „Atmospheric Aerosols and Nucleation“; Ed. By P.E. Wagner and G. Vali, Lecture Notes in Physics, 309; 323; 1988

Lemmon E.W.; Huber M.L.; McLinden M.O.; REFPROP-Reference Fluid Thermodynamic and Transport Properties; NIST Standard Reference Database 23; Version 8.0

Kunte H.; Seume J.R.; Partial Admission Impulse Turbine for Automotive ORC Application; International Conference on Engines & Vehicles; doi: 10.4271/2013-24-0092; Naples; Italy; 2013

Span R.; Eifler W.; Struzyna R.; Nutzung der Motorwärme durch Kreisprozesse; presented at the FVV Informationstagung Motoren/Turbomaschinen; Bad Neuenahr; March 16-18; 2011

Treffinger P.; Untersuchungen zur spontanen Kondensation in übersättigten Dämpfen; Dissertation; Fakultät für Chemieingenieurwesen der Universität Fridericana Karlsruhe (TH); 1994

Verneau A.; Supersonic Turbines for Organic Fluid Rankine Cycles from 3 to 1300 kW; von Karman Institute for Fluid Dynamics; Lecture Series 1987-07; Bertin; France; 1987

WA; VDI Wärmeatlas; VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC); Springer Verlag; 2005