Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Harald S. Kunte, Joerg R. Seume

2nd International Seminar on ORC Power Systems, Rotterdam, The Netherlands, October 7th & 8th, 2013

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

Outline

- 1. Motivation
- 2. Thermodynamic analysis
- 3. Design of the impulse turbine
- 4. Conclusion/Outlook

H. Kunte

8 October 2013

slide 2 /16

© Leibniz Universität Hannover 2013

Institute of Turbomachinery	1
and Fluid Dynamics	

Design of a Partial
Admission Impulse
Turbine for an
Automotive ORC-
Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

Objectives

Goals of automobile manufacturers:

- Reduction of fuel consumption
- Achieving emission targets
 - \rightarrow Increase efficiency of the power-train

H. Kunte

8 October 2013

Leibniz Universität Hannover

slide 3 /16

© Leibniz Universität Hannover 2013

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 4 /16

© Leibniz Universität Hannover 2013

Thermodynamic model and limitations

Truck application; diesel-engine			
	ṁ _{eg} [kg/s]	T _{eg} [K]	ΔH _{T,eg;343K} [kJ/s]
Design point (DP)	0.249	615.15	78.5
Part-load (PL)	0.126	569.15	31.6
Overload (OL)	0.338	630.15	108.4

Model:

- Investigation of the thermodynamic cycle for the design point
- Fluid properties: NIST Database 23 (Lemmon et al.)
- Parameter study (e.g. max. pressure, min. pressure)
- Supposed turbine
 efficiency: 70%

Limitations of the ORC (pre	Criterion	
Max. pressure	ure 40 bar	
Min. pressure	0.5 bar	Salety
Min. ΔT heat-exchangers	20 K	Size heat-
Min. T of condensation	343 K	exchanger

Institu	te of T	urbon	nachiner
and Fl	uid Dy	namic	S

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

1 (Leibniz 1 0 2 Universität 1 0 9 4 Hannover

H. Kunte

8 October 2013

slide 5 /16

© Leibniz Universität Hannover 2013

Results of the thermodynamic analysis (DP)

Kunte and Seume (2013)

- Ethanol promises highest power output
- Superheating decreases power output for ethanol

Institute of Turbomachinery	y
and Fluid Dynamics	

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 6 /16

© Leibniz Universität Hannover 2013

Reason for negative effect of superheating (DP)

Superheated fluid

ORC-Cycle
Condensation line
Exhaust gas temperature

High efficiency of the stator causes an almost isentropic expansion in the nozzles:

In Case of thermal equilibrium

- \rightarrow Risk of erosion due to droplets
- → Temperature must be raised to avoid erosion
- \rightarrow Decreased power output

In reality:

Homogeneous nucleation effects delay droplet formation

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 7 /16

© Leibniz Universität Hannover 2013

Supersaturation of the vapour phase according to Hale (1988)

Definition of saturation (WA (2005)):

$$S = \frac{p_{VAP}}{p_{VAP,s}(T)}$$

S=1: saturated S>1: supersaturated

Approach by Hale (1988):

$$\frac{\ln S}{\Omega^{3/2}} = \frac{(36\pi)^{1/2} x_o \delta_0}{\sqrt{\ln(J_c/J)}} \left(\frac{T_c}{T} - 1\right)^{3/2}$$

Design of a Partial
Admission Impulse
Turbine for an
Automotive ORC-
Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 8 /16

© Leibniz Universität Hannover 2013

Effect of supersaturation according to Hale (1988)

Benefits of supersaturation vs. equilibrium condensation ($\eta_T=0.7$):

	ΔΡ [%]	ΔΡ [W]	P _{Wilson} [kW]	Π[-]	T _{in} [K]
DP	+1.18	+118	10.20	49.1	522.2
PL	+0.62	+19	3.09	32.5	496.6
OL	+0.84	+127	15.13	39.2	508.0

Potential and uncertainties:

- + The expansion rate is no factor in this model.
 High expansion rates, like in laval-nozzles, promises considerably higher supersaturation (choosen model is very conservative) (Treffinger (1994))
- + The possible supersaturation for ethanol is higher than predicted by the model (vapour phase is stabilized by molecular associations) (WA (2005))
- Homogeneous nucleation requires very clean fluids (Bier et al. (1995))
- Uncertainties by the model itself (Treffinger (1994))

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 9 /16

© Leibniz Universität Hannover 2013

Impulse turbine

Benefits of the axial impulse turbine:

- High efficiency at high pressure ratios (Verneau (1987))
- Acceptable rotational speed (compared to other turbine designs)
- Single stage → compact
- Wide operating range due to variable partial admission

Institute of Turbomachinery
and Fluid Dynamics

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 10 /16

© Leibniz Universität Hannover 2013

Supersonic blade design

Stator; Laval-nozzles:

- Subsonic flow up to the throat (1)
- Sonic velocity at the throat
- Supersonic flow in the divergent nozzle part (2)

Rotor; Impulse blades: Sharp leading and trailing edges minimize supersonic shock losses

Kunte and Seume (2013)

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 11 /16

© Leibniz Universität Hannover 2013

Flow control

Institute of Turbomachinery	1
and Fluid Dynamics	

Design of a Partial
Admission Impulse
Turbine for an
Automotive ORC-
Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 12 /16

© Leibniz Universität Hannover 2013

Turbine design parameters and CFD

Preliminary design based on a model by Aungier (2006)

Outer Diameter	65.2 mm
Rotational speed at DP	105,000 rpm
Partial Admission at DP(OL)	20 % (40 %)

CFD-Modell:

- Ansys CFX 13.0
- Steady-state calculation
- Frozen rotor interface
- 18 million cells (with full radial resolution)
- Q3D-calculations for the calculation of the operating curve (reduced radial resolution)

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 13 /16

© Leibniz Universität Hannover 2013

Performance prediction for the truck application

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 14 /16

© Leibniz Universität Hannover 2013

Design of the prototype

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

1 1 Leibniz 1 0 2 Universität 1 0 0 4 Hannover

H. Kunte

8 October 2013

slide 15 /16

© Leibniz Universität Hannover 2013

Conclusions

- Working fluid: Ethanol promises the highest power output for the considered application.
- An increase in power compared to thermal equilibrium is possible due to supersaturation in the preliminary performance prediction (Wilson line).
- The axial impulse turbine is suitable for the utilization as an expansion turbine for an automotive ORC (predicted efficiencies):

Design point:	58%
Part-load:	44%
overload:	65%

- Coverage of the performance range requires variable partial admission
- Predicted rotational speeds allow direct coupling of turbine with the generator for compact design.

Outlook

- Detailed aerodynamic investigation with design improvement
- Prototyping for truck application
- Experimental verification
- Investigation of homogeneous nucleation with consideration of the expansion rate (e.g. Treffinger 1994) might further improve performance

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 16 /16

© Leibniz Universität Hannover 2013

Thank you for your attention!

Thanks to:

Forschungsvereinigung Antriebstechnik e.V.

Design of a Partial Admission Impulse Turbine for an Automotive ORC-Application

Outline

Motivation

Thermodynamic analysis

Design of the impulse turbine

Conclusion

H. Kunte

8 October 2013

slide 17 /16

© Leibniz Universität Hannover 2013

References

Aungier R.H.; Turbine Aerodynamics: Axial-flow and radial-inflow turbine design and analysis; ASME-Press; New York; ISBN 0791802418; 2006

Bier K.; Ehrler F.; Treffinger P.; Wright W.; Spontane Kondensation übersättigter reiner Dämpfe in Nebelkammern; VDI-Fortschrittsbericht; Reihe 7; Nr. 278; VDI-Verlag; 1995

Hale B.N.; Scaled Models for Nucleation; Published in "Atmospheric Aerosols and Nucleation"; Ed. By P.E. Wagner and G. Vali, Lecture Notes in Physics, 309; 323; 1988

Lemmon E.W.; Huber M.L.; McLinden M.O.; REFPROP-Reference Fluid Thermodynamic and Transport Properties; NIST Standard Reference Database 23; Version 8.0

Kunte H.; Seume J.R.; Partial Admission Impulse Turbine for Automotive ORC Application; International Conference on Engines & Vehicles; doi: 10.4271/2013-24-0092; Naples; Italy; 2013

Span R.; Eifler W.; Struzyna R.; Nutzung der Motorwärme durch Kreisprozesse; presented at the FVV Informationstagung Motoren/Turbomaschinen; Bad Neuenahr; March 16-18; 2011

Treffinger P.; Untersuchungen zur spontanen Kondensation in übersättigten Dämpfen; Dissertation; Fakultät für Chemieingenieurwesen der Universität Fridericiana Karlsruhe (TH); 1994

Verneau A.; Supersonic Turbines for Organic Fluid Rankine Cycles from 3 to 1300 kW; von Karman Institute for Fluid Dynamics; Lecture Series 1987-07; Bertin; France; 1987

WA; VDI Wärmeatlas; VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC); Springer Verlag; 2005