INVISCID STATOR/ROTOR INTERACTION OF A SINGLE STAGE HIGH EXPANSION RATIO ORC TURBINE

2nd International Seminar on ORC Power Systems

E. Rinaldi, A. Buonocore, R. Pecnik, P. Colonna Delft University of Technology

Outline

2 Methodology

Motivation

Preliminary design: standard tools

Considerable improvement of non-conventional machines \implies accurate and reliable CFD

Challenges:

- High expansion ratio
 supersonic flows
- Detailed unsteady simulations
- Expansion in the *dense gas* region
- Accurate thermophysical description of the fluid

TUDelft

Objectives

• Improve the CFD predictive capability:

- High quality mesh generation
- RANS equations for real fluids
- Unsteady simulations (stator/rotor interaction)
- Reduce the computational cost
- Analysis of existing designs:
 - On design conditions
 - Off design conditions (variable input)
- Main objective: improve the turbomachinery performance
 - Automatic shape optimization

Rinaldi et al. Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013 4 / 14

Mesh generation

Motivation:

- Accurate results need high quality mesh
- In-house tools to be coupled for optimization

Features:

- Quadrilateral and triangular elements
- OpenGL visualization
- IO interface to FLUENT neu and msh format
- Coordinate transformation
- Fully automated

CFD Code

- SU-Joe (Stanford University)
- Cell centered finite volume discretization
- Second order space (least-squares gradient) and time accuracy (Runge–Kutta, BDF2)
- Highly optimized and scalable for HPC (up to 4000 cores)
- Mixing plane, sliding interface
- Supports UQ methods
- Validation: scramjet engines, compressor stages P&W turbofan
- Real gas EoS (tables)

Pecnik, R., *et al.*, *AIAA Journal*, 2012, *50*, 1717–1732

Real gas solver

ŤUDelft

Rinaldi et al. Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013 7 / 14

Real gas solver

Ť∪Delft

Rinaldi et al. Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013 7 / 14

Interpolation accuracy

- bilinear
- --- least-squares gradient
- --- polynomial
- \bigtriangleup speed of sound

 $\Box C_{P}$

○ pressure

- Polynomial: 4th order convergence
- Max interpolation error 100x100 table:
 - $\approx 0.01\%$ bilinear/gradient
 - \approx 0.0001% polynomial

TUDelft

Computational cost

- SW 1 order of magnitude more expensive than PRSV
- EoS evaluation cost depends on the input
- Tables: max gain up to 4 orders of magnitude

ORC Turbine

Cycle:

- Waste heat: *T* > 350°C, 450-900 kW_{th}
- Power output: 60-165 kW_e
- Working fluid: Toluene

Turbine:

- Radial, single stage low-reaction
- High pressure ratio ($P_{\rm in}/P_{\rm out} > 100$)
- Inlet in the dense gas region
- Rotational speed (18-28 krpm)

Mach number

Rinaldi et al.

Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013

Rotor inlet angle

TUDelft

2 Methodology

Conclusions

- Methodology for accurate real gas simulations
 - Automated meshing tool
 - Real gas Navier–Stokes solver
 - Accurate and efficient properties evaluation
 - Unsteady simulation capability
- Analysis of a high expansion ratio ORC turbine
 - Unsteady stator/rotor interaction
 - Highly supersonic flow
 - Complex shock/shock interaction/reflection

Future work

- Experimental data (mini ORC test bench @TUDelft)
- Three dimensional viscous simulation
- Design improvement (numerical optimization)

TUDelft

Rinaldi et al. Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013 13 / 14

Thank you for your attention!

Questions?

Rinaldi et al.

Inviscid stator/rotor interaction of a single stage high expansion ratio ORC turbine June 5, 2013 14 / 14