

1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO₂ RADIAL COMPRESSORS: A COMPARISON

B. Monje^{*}, D. Sánchez^{*}, M. Savill⁺, P. Pilidis⁺ and T. Sánchez^{*}

*Thermal Power Group (GMTS) School of Engineering, University of Seville Camino de los descubrimientos s/n 41092, Sevilla, Spain [†]Department of Power and Propulsion School of Engineering, Cranfield University Cranfield MK430AL United Kingdom

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

- **1. INTRODUCTION**
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

u

1. INTRO – Review of past work

• The **Thermal Power Group at the <u>University of Seville</u> and the Department of Power & Propulsion** at <u>Cranfield University</u> have researched the performance of S-CO₂ diffusers.

B. Monje et al., Comparing the pressure rise of air and supercritical carbon dioxide in conical diffusers, Paper GT2012-69835, Turbo Expo 2012, Copenhagen.

A. López et al., Effect of turbulence intensity and flow distortion on the performance of conical diffusers operating on supercritical carbon dioxide, Paper GT2013-94009, Turbo Expo 2013, San Antonio.

B. Monje et al., Aerodynamic analysis of conical diffusers operating with air and supercritical carbon dioxide, International Journal of Heat and Fluid Flow, In press (2013).

MOTORES

 $(K, C_p) = \mathcal{F}(AR, L/D_{th}, Re, M, B_{th}, T_u, l_{tu}/\delta^*, \alpha_{dist}, \alpha_{swirl}, Z, \gamma)$

1. INTRO – Review of past work

- The Thermal Power Group at the <u>University of Seville</u> and the Department of Power & Propulsion at <u>Cranfield University</u> have researched the performance of S-CO₂ diffusers.
- Outcome: understanding S-CO₂ turbomachinery design gained by exploring the design space, as done by other researchers in the past (for air).

ur G

NAS Y MOTORES

F.X. Dolan, P.W. Runstadler Jr., Pressure recovery performance of conical diffusers at high subsonic Mach numbers, NASA CR 2299, 1973.

David Japikse, Turbomachinery diffusers design technology. Concepts ETI, Inc., Norwich, VT.

1. INTRO – This work

- The Thermal Power Group at the <u>University of Seville</u> and the Department of Power & Propulsion at <u>Cranfield University</u> have researched the performance of S-CO₂ diffusers.
- Outcome: understanding S-CO₂ turbomachinery design gained by exploring the design space, as done by other researchers in the past (for air).
- The work presented today aims to
 - 1. Assess the suitability of a particular 1D model to design efficient **S-CO₂ compressors**.
 - 2. Use 3D-CFD analysis to determine if **local flow phenomena** are likely to be overlooked by a 1D tool: condensation, shock waves, choke...

1. INTRO – This work

2.2) New design guidelines (hopefully) developed

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

2. THE ONE-DIMENSIONAL MODEL

• 1D Mean streamline code based on Conservation Laws and Empirical Correlations:

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

B. Monje, D. Sánchez, M. Savill, P. Pilidis and T. Sánchez

3. VALIDATION

• Validation for S-CO₂: Centrifugal compressor at **SANDIA N.L**.

N (rpm)	Tot	Р ₀₁ (bar)	ṁ (kg/s)	Р ₃ (bar)			P_{05} (bar)			Т ₀₅ (К)		
	(K)			Exp.	Mod.	Dev. (%)	Exp.	Mod.	Dev. (%)	Exp.	Mod.	Dev. (%)
10000	305.5	76.76	0.454	76.76	77.40	0.83	79.79	77.74	1.28	-	-	-
20000	305.5	76.76	0.771	78.54	79.49	1.21	80.69	81.11	0.53	-	-	-
28000	305.5	76.76	1.134	82.11	82.06	-0.06	85.33	85.19	-0.16	-	-	-
39000	305.6	77.11	1.451	85.68	87.88	2.54	92.82	94.55	1.86	-	-	-
49000	306.3	78.54	1.816	94.25	95.46	1.28	106.39	106.18	-0.20	-	-	-
55000	306.4	78.90	2.043	99.96	100.53	0.57	113.53	114.41	0.78	-	-	-
56000	306.6	78.26	2.088	101.04	101.54	0.49	114.96	115.85	0.77	-	-	-
60000	306.9	79.97	2.225	102.11	105.69	3.51	121.39	122.37	0.81	-	-	-
64900	307.9	82.11	2.406	108.53	111.98	3.18	129.24	131.59	1.82	-	-	-
64384	308.71	82.86	2.860	106.7	108.94	2.10	119.4	108.94	4.30	323.82	324.17	0.11
29888	306.78	79.20	1.315	82.64	84.86	2.69	85.68	88.01	2.72	310.094	310.056	-0.01
59584	308.33	82.24	2.609	102.60	104.89	2.23	112.28	118.5	5.54	321.64	321.884	0.08

S.A. Wrigth et al., Operation and Analysis of a Supercritical CO2 Brayton Cycle, Report SAND2010-0171, 2010.

R.B. Vilim, A One-Dimensional Compressor Model for Super-Critical Carbon Dioxide Applications, Proceedings of ICAPP'10, Paper 10156.

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION

4. CASE STUDY

- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

ur G

4. CASE STUDY

- **10 MW S-CO2** power cycle for a CSP application
 - ✓ Compressor inlet: 85 bar & ~ 40 ºC
 - ✓ Mass flow rate: 71.55 kg/s
 - ✓ Pressure ratio: 3:1

Common design inputs

- Design inputs: M'_{2s} , Z_{FB} , β_3
- **Optimization** of η_{tt} in the ranges Z_{FB} =[18,30], β_3 =[30,45] and M'_{2s} =[0.6,0.75]
- **Design results:** Z_{FB} =24, β_3 =37.8° and M'_{2s} =0.676

MOTORES

Inlet total temperature: 40 ºC
Inlet total pressure: 85 bar
Static pressure at impeller outlet: 187.27 bar
Number of full/splitter blades: 24/24
Splitter-full blade length ratio: 0.5
Blade thickness: constant, 1 mm
Hub/Shroud inlet radius: 25/44.6 mm
Impeller exit radius: 94.8 mm
Impeller exit blade height: 5.1 mm
Hub/Shroud blade angle at inlet: 49.9/64.71º
Blade angle at impeller exit: 37 799

4. CASE STUDY

- 10 MW S-CO2 power cycle for a CSP application
 - ✓ Compressor inlet: 85 bar & ~ 40 ºC
 - ✓ Mass flow rate: 71.55 kg/s
 - ✓ Pressure ratio: 3:1

Common design inputs

- Design inputs: M'_{2s} , Z_{FB} , β_3
- **Optimization** of η_{tt} in the ranges Z_{FB} =[18,30], β_3 =[30,45] and M'_{2s} =[0.6,0.75]
- **Design results:** Z_{FB} =24, β_3 =37.8° and M'_{2s} =0.676
- Computation model:
 - ✓ Single Reference Frame (SRF) \rightarrow Moving walls.
 - ✓ Boundary conditions: Mass flow inlet, static pressure outlet and shaft speed
 - ✓ Highly turbulent flow (Re ~ $2 \cdot 10^7$) → boundary layer refinement
 - ✓ Given the limitation in the computational capacity, the realizable k- ϵ model is used → No refinement in the near wall region

ASME ORC 2013 2nd International Seminar on ORC Power Systems October 7th & 8th, 2013 De Doelen, Rotterdam, The Netherlands

B. Monje, D. Sánchez, M. Savill, P. Pilidis and T. Sánchez

4. CASE STUDY

• Results (impeller)

Parameter	1D	CFD/1D	1D	CFD/1D	1D	CFD/1D		ELLECFD/1D
m (kg/s)	43.6	B.C.	46.5	B.C.	35.8	B.C.	44.0	B.C.
N (rpm)	25087	B.C.	25087	B.C.	12544	B.C.	15052	B.C.
P ₀₁ /P ₀₄ (bar)	85.0/202.4	0.91/1.06	85.0/223.9	1.08/1.05	85.0/123.0	0.96/1.02	85.0/145.8	0.97/1.03
Т ₀₁ /Т ₀₄ (К)	333.1/408.9	B.C./1.04	328.1/408.4	B.C./1.04	313.1/335.8	B.C./0.73	313.1/345.9	B.C./1.02
P ₁ /P ₄ (bar)	82.4/138.6	0.90/B.C	82.3/151.0	0.93/B.C.	84.0/104.0	0.96/B.C.	83.5/115.9	0.96/B.C.
T ₁ /T ₄ (K)	330.7/376.6	0.98/1.03	325.7/376.1	1.00/1.02	312.5/325.5	1.00/1.01	312.1/332.1	1.00/1.01
v ₁ /v ₄ (m/s)	48.9/197.9	1.18/1.06	48.7/199.3	1.13/1.05	23.8/96.9	1.22/1.23	29.3/116.7	1.15/1.12
$ ho_{1}/ ho_{4}$ (kg/m ³)	207.8/287.8	0.85/0.94	222.7/326.0	0.89/0.92	351.4/392.6	0.85/0.87	350.0/415.0	0.87/0.89

4. CASE STUDY

• Results (impeller)

- ✓ Differences between 5-10 % in P&T
 - Underestimation at inlet & overestimation at outlet
- ✓ Higher discrepancies for velocities (inaccurate blockage factor?)
- ✓ Inlet pressure overpredicted by CFD suggests that losses are underestimated, which can be explained by:
 - ↓ Computation capacity → Refined grids + UDRGM simultaneously?
 - Realizable k- ε instead of k- ω SST \rightarrow inaccurate friction loses
 - No gap in the impeller model but...
 - ... from 1D: friction + tip losses = 85-90 % of overall impeller losses
 - Condensation likely to take place → UDRGM needs to be improved to model two phase flow.

Results for high speed (~86 %) confirm the existence of a saturated wet CO_2 vapour region — at the throat of the impeller.

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

- A very recent contribution by MIT: Nikola Baltadjiev MSc Thesis, 2012
 - ✓ Influence of real-gas effects on compressor performance (mean streamline code)
 - ✓ Gap: analysis of condensation under non-equilibrium conditions

Figure 5-1: Equilibrium (ABC) and non-equilibrium (ADE) flow expansion through the vapor-pressure curve.

- A very recent contribution by MIT: Nikola Baltadjiev MSc Thesis, 2012
 - ✓ Influence of real-gas effects on compressor performance (mean streamline code)
 - ✓ Gap: analysis of condensation under non-equilibrium conditions
- The work confirms the observations by Pecnik et al. (TU Delft): saturation conditions are met around the leading edge of the impeller

- A very recent contribution by MIT: Nikola Baltadjiev MSc Thesis, 2012
 - ✓ Influence of real-gas effects on compressor performance (mean streamline code)
 - ✓ Gap: analysis of condensation under non-equilibrium conditions
- The work confirms the observations by Pecnik et al. (TU Delft): saturation conditions are met around the leading edge of the impeller
- Proposal: a parameter is suggested to evaluate whether non-equilibrium condensation will take place:

$$If \ \frac{t_n}{t_r} = \frac{time \ for \ nucleation \ to \ take \ place}{residence \ time \ in \ saturation \ region} < 1 \rightarrow Condensation \ occurs$$

- A very recent contribution by MIT: Nikola Baltadjiev MSc Thesis, 2012
 - ✓ Influence of real-gas effects on compressor performance (mean streamline code)
 - ✓ Gap: analysis of condensation under non-equilibrium conditions
- The work confirms the observations by Pecnik et al. (TU Delft): saturation conditions are met around the leading edge of the impeller
- Proposal: a parameter is suggested to evaluate whether non-equilibrium condensation will take place:

$$If \ \frac{t_n}{t_r} = \frac{time \ for \ nucleation \ to \ take \ place}{residence \ time \ in \ saturation \ region} < 1 \rightarrow Condensation \ occurs$$

 It is not conclusive with regard to whether or not condensation will actually take place in a S-CO₂ compressor with close to critical inlet conditions → most likely it will (?)

1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO2 RADIAL COMPRESSORS: A COMPARISON

B. Monje, D. Sánchez, M. Savill, P. Pilidis and T. Sánchez

5. FURTHER DISCUSSION

• With respect to the gap

Parameter	1D	No Gap + No BL	Gap + No BL	No Gap + BL	Gap + BL
m (kg/s)	73.04	B.C.	B.C.	B.C.	B.C.
N (rpm)	15184	B.C.	B.C.	B.C.	B.C.
P ₀₁ /P ₀₄ (bar)	75.00/141.16	74.70/141.41	75.09/142.68	74.25/140.93	74.94/143.00
Т ₀₁ /Т ₀₄ (К)	313.15/361.40	B.C./362.47	B.C./362.53	B.C./362.95	B.C./362.83
P ₁ /P ₄ (bar)	73.07/100.89	71.17/B.C.	71.61/B.C.	70.66/B.C.	71.44/B.C.
Т ₁ /Т ₄ (К)	308.79/335.75	309.6/336.5	309.7/336.0	309.5/337.1	309.7/336.1
v ₁ /v ₄ (m/s)	61.28/160.08	55.9/161.5	55.22/163.1	56.88/161.4	55.53/163.8
$ ho_1/ ho_4$ (kg/m ³)	221.6/281.4	221.4/276.5	224.5/278.9	218.0/274.0	223.3/278.8
Slip factor, σ	0.9075	0.8414	0.8491	0.8486	0.8459
Total pressure loss coefficient, $\Sigma \varpi$	0.3982	0.7282	0.7078	0.6932	0.5976

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATIONS OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

B. Monje, D. Sánchez, M. Savill, P. Pilidis and T. Sánchez

- Novel contributions to the design methodology
 - ✓ Upper-bounded absolute/relative Mach number M_1/M'_1 → Avoiding condensation
 - ✓ Upper bound of pressure ratio \rightarrow **Avoiding** acceleration \rightarrow Condensation

B. Monje, D. Sánchez, M. Savill, P. Pilidis and T. Sánchez

6. APPLICATIONS OF NEW GUIDELINES

- Novel contributions to the design methodology
 - ✓ Upper-bounded absolute/relative Mach number $M_1/M'_1 \rightarrow$ Avoiding condensation
 - \checkmark Upper bound of pressure ratio \rightarrow Avoiding **acceleration** \rightarrow Condensation

$$D_s = \frac{D \cdot \Delta H^{1/4}}{\sqrt{Q}}$$

DE MAQUINAS Y MOTORES u GMTS COS DE SEVILLA

6. APPLICATIONS OF NEW GUIDELINES

- Novel contributions to the design methodology
 - ✓ Upper-bounded absolute/relative Mach number M_1/M'_1 → Avoiding condensation
 - ✓ Upper bound of pressure ratio → Avoiding
 acceleration → Condensation
 - ✓ Need to increase the *number of blades due* to high aerodynamic loading
 - ✓ Need to add *splitter blades* due to high aerodynamic loading

- 1. INTRODUCTION
- 2. THE ONE-DIMENSIONAL MODEL
- 3. VALIDATION
- 4. CASE STUDY
- 5. FURTHER DISCUSSION
- 6. APPLICATION OF NEW GUIDELINES
- 7. SUMMARY AND CONCLUSIONS

7. SUMMARY AND CONCLUSIONS

- The analysis of air vs. S-CO2 conical diffusers shows substantial differences between both fluids
- A 1D tool for centrifugal compressor design is implemented and used to produce a reference S-CO2 compressor → validation to the extent possible
- 1D vs 3D differences are large enough to suggest that standard design rules might not be applicable if efficiencies comparable to contemporary air compressors are sought.
- Some complements to ANSYS Fluent[®] are necessary in order to properly simulate two phase flow (likely to happen in supercritical CO2 turbomachinery) when pushing the supercritical features to the limit.

1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO₂ RADIAL COMPRESSORS: A COMPARISON

B. Monje^{*}, D. Sánchez^{*}, M. Savill⁺, P. Pilidis⁺ and T. Sánchez^{*}

*Thermal Power Group (GMTS) School of Engineering, University of Seville Camino de los descubrimientos s/n 41092, Sevilla, Spain [†]Department of Power and Propulsion School of Engineering, Cranfield University Cranfield MK430AL United Kingdom

