

Influence of the configuration of heat exchangers on the performance of ORCs:

a first step towards a system optimization

Daniël Walraven^{1,*}, Ben Laenen² and William D'haeseleer¹

¹University of Leuven (KU Leuven)

²Flemish Institute for Technological Research (VITO)

- Optimization for ORCs:
 - Cycle: temperatures, pressures, ...

or

- Components: turbine, cooling system, heat exchangers, ...
- \Rightarrow Assumptions
- System optimization:
 - Combine cycle- and component optimization

⇒Eliminate many assumptions

- System optimization with heat exchangers:
 - Shell-and-tube heat exchangers
 - Plate heat exchangers
- \Rightarrow Pinch-point ΔT , pressure drop, condenser temperature, ... are results

- Introduction
- ORC-model
- Heat exchanger models:
 - Shell-and-tube heat exchanger
 - Plate heat exchanger
- Optimization method
- Results
- Conclusions

Shell-and-tube heat exchanger: Tema E

- Inlet states
- Requirement outlet state
- Geometry

- Outlet states
- Size
- Heat transfer coefficient,
 ΔT, etc.

Plate heat exchanger: chevron corrugations

Inlet states

Energy

Ville

- Requirement outlet state
- Geometry

- Outlet states
- Size
- Heat transfer coefficient,
 ΔT, etc.

Optimization method

- Optimization variables:
 - Cycle:
 - Temperature before turbine
 - Pressure before turbine
 - Pressure before pump
 - Working fluid mass flow
 - Heat exchangers:
 - 4/5 geometrical variables for every heat exchanger
- ⇒ Computationally difficult

8/10/2013

• Gradient-based:

- Automatic
 differentiation in reverse
 mode
- Adaptation RefProp

- Extra constraint:
 - Maximum total heat exchanger surface

- Introduction
- ORC-model
- Heat exchanger models:
 - Shell-and-tube heat exchanger
 - Plate heat exchanger
- Optimization method
- Results
- Conclusions

Reference data

- Heat source:
 - Water
 - 125° C
 - 100 kg/s
- Cooling fluid:
 - Water
 - -20° C
 - 800 kg/s

• ORC:

- Simple/recuperated
- 1 pressure level

$$- A_{max} = 4000 \text{ m}^2$$

• Plate

• Shell-and-tube, 90°

Energy Ville Influence maximum total heat exchanger surface (2)

• Plate

• Shell-and-tube, 90°

• Plate

• Shell-and-tube, 90°

Energy Influence maximum total heat exchanger Surface (4)

• Plate

• Shell-and-tube, 90°

 Plate heat exchanger, simple

Plate heat exchanger, recuperated

Influence cooling fluid inlet temperature

• Plate heat exchanger

Influence cooling fluid mass flow

• Plate heat exchanger

- System optimization of ORCs is possible
- Plate heat exchangers perform mostly the best

- Strong influence cooling fluid properties
 ⇒Include cooling system in optimization
- Strong influence A_{max}
 - \Rightarrow Economic system optimization