Preliminary Design Method For Small Scale Centrifugal ORC Turbines ASME-ORC 2013, 2nd Int. Seminar on ORC Power Systems Rotterdam, 7-8 October

E. Casati^{1,2}, S. Vitale¹,M. Pini²,G. Persico², & P. Colonna¹ ¹Aerospace Dept., Delft University of Technology ² Energy Dept., Politecnico di Milano

4 3. Preliminary design of a 10 kW_{el} ROT

Prel. Design Method µORC Centrif. Turbines

Introduction

- ORC systems ⇒ important for decentralized power generation.
 - Future development of micro-ORC turbogenerator (10-100 kW_{el})
 - WHR from truck engines, concentrated solar, domestic CHP, ...

The turbine represents the most critical component in terms of efficiency, compactness, cost.

4 3. Preliminary design of a 10 kW_{el} ROT

Prel. Design Method µORC Centrif. Turbines

ORC Turbine (1/2)

Use of ORC fluids:

- simple layout, compact and reliable turbine $N_{stg} \downarrow$, $U \downarrow$
- complex aerodynamic design $M \uparrow$, $(\dot{V}_{out}/\dot{V}_{in}) \uparrow$
- Large compressibility effect \rightarrow No similarity rules (D_s , ω_s)

 \implies non-conventional turbine architectures \implies reliable preliminary design *1D* tool for ORC turbines

ORC Turbine (2/2)

Centrifugal Architecture

- $D \uparrow \Rightarrow A_{\mathsf{flow}} \uparrow$
- "Easy" and compact multi-stage solutions
- centrifugal term!!

$$L_{\rm eu} = \frac{V_1^2 - V_2^2}{2} + \frac{W_2^2 - W_1^2}{2} + \frac{U_1^2 - U_2^2}{2}$$

• ORC application Macchi (1977); Casci (1979):

 stator-rotor solution, not counter-rotating (1 generator)

4 3. Preliminary design of a 10 kW_{el} ROT

Prel. Design Method µORC Centrif. Turbines

zTurbo

- *zTurbo*: 1D design-analysis code (fortran 90)
- Turbine preliminary design:
 - ► selecting basic design parameters ⇒ necessary condition for a good turbine Macchi (1977, 1985)
 - "rigorous" approach \Rightarrow multi-variable optimization
- Main features:
 - proper treatment of real gases (LUT)
 - multiple turbine architectures
 - different loss models

Code Validation (1/3) • *zTurbo* vs test-case TG 4 stages Fottner (1990)

$\begin{array}{c c} n_0 & 7500 \ \mathrm{rpm} \\ \dot{m}_{\mathrm{flow}} & 7.8 \ \mathrm{kg/s} \\ T_{\mathrm{t,in}} & 413 \ \mathrm{K} \\ \rho_{\mathrm{t,in}} & 2.6 \ \mathrm{bar} \\ \rho_{\mathrm{out}} & 1.022 \ \mathrm{bar} \\ \beta_{\mathrm{stg}} & 1.255 \\ r_{\mathrm{is}} & 0.5 \end{array}$	Tross section test-case
---	-------------------------

		$\alpha_{\rm out} [^\circ]$	$S/b_{\rm ax}$	cl/b_{ax}	b _{ax} [mm]	tip [mm]	$D_{\rm out}/D_{\rm in}$
	Stator	68	0.81	0.15	49.4	0	1.01
	Rotor	69.1	1.07	0.6	36.9	0.4	1.01
τUDe	elft						

Code Validation (2/3)

Measured data and zTurbo resultes:

	1 st	2 st	3 st	4 st
pt [bar]				
Data (meas.)	2.11	1.68	1.335	1.046
zTurbo	2.1	1.66	1.32	1.04
err. [%]	0.47	1.19	1.12	0.57
$T_{\rm t}[\dot{K}]$				
Data (meas.)	386.2	363.1	340.1	320.2
zTurbo	391.1	366.0	343.2	323.1
err. [%]	1.28	0.82	0.87	0.62
V _{out} [m/s]				
Data (meas.)	66.1	66.3	62.5	59.5
zTurbo	65.48	65.47	61.62	58.55
err. [%]	0.93	1.25	1.408	1.59
h _{bld} [m]				
Data	67.5	77.5	89.2	103
zTurbo	65.7	75	88.5	0,104
err. [%]	2,67	3,23	0,78	0,97

	Data	zTurbo	err. [%]
$\eta_{\rm ts}$	0.913	0.894	2.08

- the overall relative error is within the ranges of uncertainty of all the statistics correlations used.

 \Rightarrow reliable procedure.

^{- 3-}D turbine \Rightarrow 1-D tool

Code Validation (2/3)

Measured data and zTurbo resultes:

	1 st	2 st	3 st	4 st
pt [bar]				
Data (meas.)	2.11	1.68	1.335	1.046
zTurbo	2.1	1.66	1.32	1.04
err. [%]	0.47	1.19	1.12	0.57
$T_{\rm t}[\dot{K}]$				
Data (meas.)	386.2	363.1	340.1	320.2
zTurbo	391.1	366.0	343.2	323.1
err. [%]	1.28	0.82	0.87	0.62
V _{out} [m/s]				
Data (meas.)	66.1	66.3	62.5	59.5
zTurbo	65.48	65.47	61.62	58.55
err. [%]	0.93	1.25	1.408	1.59
h _{bld} [m]				
Data	67.5	77.5	89.2	103
zTurbo	65.7	75	88.5	0,104
err. [%]	2,67	3,23	0,78	0,97

	Data	zTurbo	err. [%]
$\eta_{\rm ts}$	0.913	0.894	2.08

- the overall relative error is within the ranges of uncertainty of all the statistics correlations used.

 \Rightarrow reliable procedure.

^{- 3-}D turbine \Rightarrow 1-D tool

Code Validation (3/3)

• Overlap of real and resulted meridional channel.

Optimization (1/2)

• *zTurbo* doesn't solve an optimization problem

$$\eta = f(\psi, r_{\text{is}}, \beta_{\text{stg}}, b_{\text{ax}}, \left(\frac{s}{b_{\text{ax}}}\right), \alpha_{\text{geo}}, ...)$$

Optimization (1/2)

• *zTurbo* + optimization tool.

Optimization (2/2)

zTurbo coupled to an external optimization software sandia

National Laboratories (2012)

- Flexibility:
 - objective function(s)
 - independent variables
 - Constraints
 - search algorithms

\Rightarrow different optimization strategies

4 3. Preliminary design of a 10 kW_{el} ROT

Prel. Design Method µORC Centrif. Turbines

Thermodynamic cycle

• Application \Rightarrow waste heat recovery from a Diesel engine.

- thermodynamic cycle (input) from	Parameter	Unit	Value
Interature Lang et al. (2013)	Fluid	-	D ₄
	$\dot{m}_{ m flow}$	kg/s	0.266
Dequirementer officiency and	$T_{\rm t,in}$	°C	242.5
- Requirements: enciency and	$p_{\rm t,in}$	bar	4.4
compaciness	p_{out}	bar	0.087
	$\Delta h_{\rm turb,is}$	kJ/kg	48.120
	eta_{tot}	-	50.57
⇒ choice: centrifugal transonic multi-stage turbine	$\dot{V}_{out}/\dot{V}_{in}$	-	53

Design strategy (1/3)

● First approach ⇒ "repeating-stage" procedure Coomes et al. (1986);

Cerri et al. (2003); Pini et al. (2013)

Design Strategy (2/3)

 Assessing "repeating-stages" in the context of micro turbines.

 \Rightarrow the assumption of the repeating-stages can not be extended to micro-ROT

 $\begin{array}{l} \exists \mathsf{irst stages} \ \Rightarrow b_{\mathsf{rad}} \downarrow \alpha_{\mathsf{geo}}, \, \beta_{\mathsf{geo}} \uparrow \\ _\mathsf{ast stages} \ \Rightarrow b_{\mathsf{rad}} \uparrow \alpha_{\mathsf{geo}}, \, \beta_{\mathsf{geo}} \downarrow \end{array}$

Design Strategy (2/3)

 Assessing "repeating-stages" in the context of micro turbines.

 \Rightarrow the assumption of the repeating-stages can not be extended to micro-ROT First stages $\Rightarrow b_{red} \mid \alpha_{reso}, \beta_{reso} \uparrow$

ast stages $\Rightarrow b_{rad} \uparrow \alpha_{geo}, \beta_{geo} \downarrow$

Design Strategy (2/3)

 Assessing "repeating-stages" in the context of micro turbines.

⇒ the assumption of the repeating-stages can not be extended to micro-ROT First stages ⇒ $b_{rad} \downarrow \alpha_{geo}$, $\beta_{geo} \uparrow$

Last stages $\Rightarrow b_{rad} \uparrow \alpha_{geo}, \beta_{geo} \downarrow$

Design strategy (3/3)

Novel procedure for micro ROT's

* Independent variables:

- brad for each stage (x 5)
- α_{geo} for each blade row (x 10)
- D_{in} and n
- ► *h*_{bld,in}
- * Fixed parameters:

geometric parameter	value
t _{cl} [mm]	0.1
te [mm]	0.1
cl/b _{rad} [-]	0.1

* Assumptions for transonic machine (M < 1.1):

$$N_{stg} = 5$$

$$\beta_{stg} = \sqrt[N]{\beta_{tot}}$$

$$r_{is} = 0.4$$

* Constraints:

constraint	value
Flaring angle [°] outlet section [mm] aspect-ratio [-]	$\delta \leq +7.0 \ o \geq 1.0 \ h_{ m bld}/b_{ m rad} \geq 0.30$

- * Objective function: η_{ϕ} ($\phi = 0.5$)
- * Optimization parameters:

Keyword	choice
population size	100
mutation type	replace_uniform
convergence type	best_fitness_tracker
percent change	0.10
number of generations	200

5-stages turbine

Optimization results.

5-stages turbine

Optimization results.

5-stages turbine

Optimization results.

Main parameters	value
<i>P</i> [kW]	11.19
η_{ϕ} [-]	0.835
<i>n</i> [rpm]	12400
D _{in} [m]	0.053
D _{out} [m]	0.18
h _{in} [m]	0.002
δ_{max} [°]	7.00
M _{max} [-]	1.02
$(h_{\rm bld}/b_{\rm out})_{\rm max}$ [-]	1.84

tUDelft

Summary

• Comparing the 3 machines...

				^{0.1}			
Results	5-stages	4-stages	3-stages	0.08			
<i>P</i> [kW]	11.19	10.9	10.51	-	\setminus /		\vdash
η_{ϕ} [-]	0.835	0.818	0.799	0.06			
η_{ts} [-]	0.823	0.802	0.773	~0.06	()	\square	
$\Delta \eta$ [%]	1.43	1.95	3.25	<u>m</u>	\square	\Box	
M _{max} [-]	1.02	1.2	1.33	×		<u> </u>	\Box
n [rpm]	12400	14300	15400	0.04	$\overline{\Box}$	Ц	Ħ
D _{in} [m]	0.053	0.048	0.057		D	H	H
D _{out} [m]	0.18	0.169	0.162	0.02		U	5
h _{in} [m]	0.002	0.0023	0.0021	0.02			
δ_{max} [°]	7.05	7.15	11.75		2	4	5
h _{out} [m]	0.0146	0.0131	0.0182	0	3	4	5
$(h_{\rm bld}/b_{\rm out})_{\rm max}$ [-]	1.84	1.67	1.38	0-		number of stages	state
						5	roto

$$D_{\text{out}} = \frac{1}{\pi h_{\text{bld,out}}} \left(\frac{\dot{V}_{\text{out}}}{\dot{V}_{\text{in}}} \right) \left(\frac{V_{\text{rad,in}} A_{\text{in}}}{V_{\text{rad,out}}} \right)$$
(3)

fuDelft

Prel. Design Method μ ORC Centrif. Turbines

ROTs vs RIT

• Comparison with a radial-inflow single-stage turbine.

highei	refficiency		5-st	4-st	3-	-st 1-	st (RIT)	
2 similar dimension		P [kW] η _{is} [-] Μ _{max} [-]	11.19 0.835 1.02	10.9 <mark>0.818</mark> 1.2	10. <mark>0.7</mark> 1.	51 99 33	10.3 0.78 (?) N.A.	
3 half ro	tational speed	<i>n</i> [rpm] <i>D</i> _{out} [m]	0.18	14300 0.169	154 0.1	52 52	26000 0.16	

ROTs vs RIT

• Comparison with a radial-inflow single-stage turbine.

-							
1	higher efficiency		5-st	4-st	3-s	t 1-:	st (RIT)
2	similar dimension	P [kW] η _{is} [-] Μ _{max} [-]	11.19 0.835 1.02	10.9 <mark>0.818</mark> 1.2	10.51 <mark>0.799</mark> 1.33	10.3 0.78 (?) N.A.	
3	half rotational speed	n [rpm] D _{out} [m]	12400 0.18	14300 0.169	15400 0.162	2	26000 0.16
4	lower disk friction losses ($\sim rac{1}{5}$)						
				5-st	4-st	3-st	1-st (RIT)
	$P_{\rm loss,df} = \omega c_{\rm m} \rho D_{\rm out}^3 U_{\rm out}^2 \qquad (4)$	P _{loss,df} [W] P _{loss,df} / P [%] P _{loss,df} / P _{loss,RIT}	[%]	37.36 0.33 19.0	41.80 0.38 21.8	42.26 0.40 <mark>22.1</mark>	191.32 1.86

Conclusions

- *zTurbo* + optimizer \Rightarrow reliable and flexible design tool
- Novel design strategy for micro centrifugal turbines presented
- centrifugal architecture promising for (micro)ORC systems

THANK YOU FOR YOUR ATTENTION

Prel. Design Method μ ORC Centrif. Turbines

References

Casci, C. (1979). Macchine a fluido bifase (in Italian). Tamburin.

- Cerri, G., Battisti, L., & Soraperra, G. (2003). Non conventional turbines for hydrogen fueled power plants. In *Proceedings of the ASME Turbo Expo 2003* GT2003-38324. Atlanta, GA.
- Coomes, E., Dodge, R., Wilson, D., & McCabe, S. (1986). Design of a high-power-density Ljüngstrom turbine using potassium as a working fluid. San Diego, CA, USA,: Intersociety energy conversion engineering.
- Fottner, L. (1990). Test cases for computation of internal flows in aero engine components. *AGARD*, .
- Lang, W., Almbauer, R., & Colonna, P. (2013). Assessment of waste heat recovery for a heavy-duty truck engine using an ORC turbogenerator. *Journal of Engineering for Gas Turbines and Power-Transactions of the ASME*, 135, 042313–1–10.
- Macchi, E. (1977). Lecture series 100 on closed-cycle gas turbines. chapter Design criteria for turbines operating with fluids having a low speed of sound. Von Karman Institute for Fluid Dynamics.
- Macchi, E. (1985). Design limits: Basic parameter selection and optimization methods in turbomachinery design. (pp. 805–828). Izmir, Turk: Martinus Nijhoff Publ, Dordrecht, Neth volume 97 A v 2.

Pini, M., Persico, G., Casati, E., & Dossena, V. (2013). Preliminary design of a centrifugal turbine for organic Rankine cycle applications. *Journal of Engineering for* **TUGetfTurbines and Power-Transactions of the ASME**, 135, 042312–1–9.

Sandia National Laboratories (2012). The Dakota project - Large Scale Engineering Optimization and Uncertainty Analysis. Http://dakota.sandia.gov/software.html (last accessed September 2013).

