

High Efficiency ORC for High Temperature Molten Salt Boiler for Biomass Application

Bonalumi D., Astolfi M., Romano, M.C., Turi D., Silva P., Giuffrida A., Invernizzi C. Macchi E.

ENEN Roberto R., Caldera M.

- Field of application
- Heat transfer fluid: molten salt
- Wood-fired boiler
- Working fluids
- Plant characterization
- Cycles simulations
- Results

ENEN Roberta Roberto

Conclusions & future works

Climate and Energy package of the European Commission

(Dir. 2009/28/EU, Road Maps 2030 and 2050)

 \rightarrow increase of energy production from renewables, heat in particular

goals for bioenergy:

- ✓ use of biomass in CHP plants, with good exploitation of heat (DH, ...)
- ✓ distributed generation (need for technologies \leq 1 MW_{el})
- ✓ increase of electric efficiency (lower than fossil fuels)
- \checkmark reduction of emissions
- ✓ multiple renewable energy sources (i.e. biomass and solar)

ENEA, together with Research Institutes and Universities, is working on:

- local planning of biomass-to-energy pathways
- improvement of the overall efficiency of energy conversion

(funded by Italian Electrical System Research)

Research activity on the feasibility of innovative wood-fired CHP systems up to 1 MW_{el} (molten salts boiler + ORC)

Why molten salts?

good thermal carriers and heat storage capacity

possibility to couple concentrated solar power systems (CSP) with biomass fired-boilers

 \rightarrow need for stable and low freezing point mixtures (T 200÷500 °C)

Why **ORC**?

consolidated and reliable technology for wood-fired CHP plants in the power range of interest (up to 1 MW_{el})

→ need to improve η_{el} (> 20%) and to work at higher T (up to 450°C)

4

Molten salts

Analysis of binary and ternary mixtures in 200÷500 °C

- $NaNO_3/KNO_3$ (60:40 %w, "solar salt")
- Ca(NO₃)₂/NaNO₃/KNO₃ (42,2:15,3:42,5 %w)
- NaNO₃/KNO₃/NaNO₂ (7:53:40 %w)
- LiNO₃/NaNO₃/KNO₃
- ✓ good thermal properties (as thermal carries and heat storage)
- ✓ Iow environmental impact
- ✓ Iow price (except Li)

Investigation of thermodynamic properties:

thermal stability, freeezing point (liquidus), heat capacity, viscosity, density, thermal conductivity

Molten salts

NaNO ₃	KNO ₃	Ca(NO ₃) ₂	LiNO ₃	NaNO ₂	liquidus T	Max T	Ср	μ	Р	k
[%w]	[%w]	[%w]	[%w]	[%w]	[°C]	[°C]	[J/ (K g)]	[cP]	[g/ml]	[W/(K m)]
60	40				238	550÷600	1,6 [3]	≈4.5÷1,6 [3]	1,95÷1,7 [4]	≈ 0,5 [1]
7	53			40	141	450/538	≈ 1,55 [1]	10.5÷1,6 [1]	≈ 2 [1]	≈ 0,85 [2]
15	42	42			140	505	1,7÷1,6 [3]	200÷3,5 [3]	na	na
18	53		30		120	550÷600	≈ 1,55 [1][3]	30÷1,5 [1] [3] [a]	1,95÷1,7 [1]	na
18	40	21	22		<95	na	≈1,55 [1]	50÷4,5 [1] [a]	1,95÷1,7 [1]	≈ 0,45 [1]

Some data are extrapolated, they don't cover the whole T range

POLITECNICO DI MILANO

[a] extrapolated value

[1] Siegel N., Glatzmaier G. - Molten Salt Heat Transfer Fluids and Thermal Storage Technology - CIMTEC 2010, 5th Forum on New Materials – Montecatini Terme, Italy, 2010 [2] Coastal Chemical Co., L.L.C., – HITEC® Heat Transfer Salt technical brochure

[3] ENEA experimental data

[4] Bradshaw R.W. - Effect of composition on the density of multi-component molten nitrate salts - SANDIA report SAND2009-8221, December 2009

Géc)s Davide Bonalumi

Wood-fired boiler with molten salts

Analysis of components and operating conditions:

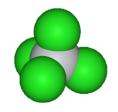
- heat exchanger (solar salts-flue gases)
- heat recovery (from flue gases and from high-T molten salts)
- pre-heating of primary and secondary air
- flue gas recirculation
- grid

parameter	unit	value
O_2 in the flue gas	% vol	7÷9
T flue gas (in HX)	°C	≈ 950
T molten salts (out CHP unit)	°C	< 250
T molten salts (in CHP unit)	°C	500

Main merit for the sought fluid is the thermal stability.

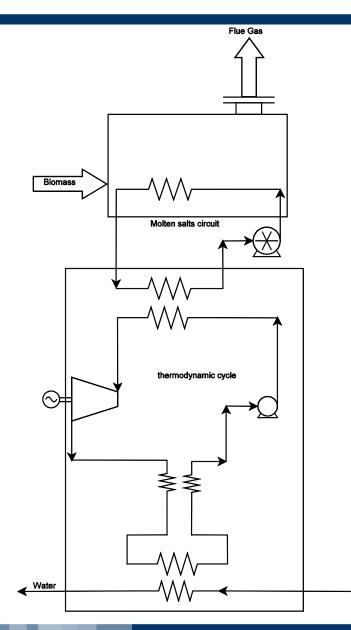
Organic compounds: Perfluorcarbons

- PP9: Perfluoro methyldecalin (C₁₁F₂₀) [Pc= 16.6 bar; Tc= 313.4°C]
 - high complexity molecule (limited cooling during expansion)
 - maximum tested temperature 420°C

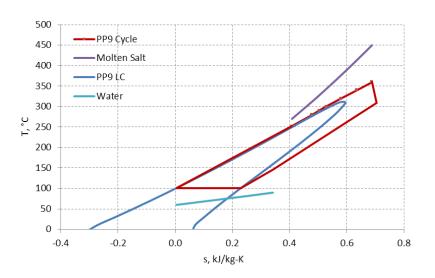

Inorganic compounds:

- TiCl₄: Titanium tetrachloride [Pc=46.6 bar; Tc=364.8°C]
 - low complexity molecule
 - thermal stability proven over 1000°C

	PP9	TiCl₄		
Thermodynamic Properties	+	++		
Toxicity	++	-		
Corrosiveness	++	-		
Explosiveness	++	-		
GWP	-	++		
ODP	+(+)	++		
Turbine Design	-	++		
Heat exchanger Design	(+)	(+)		
Price		+		
Availability	-	+		
Lagonde extremely positive expective acative extremely pagative				

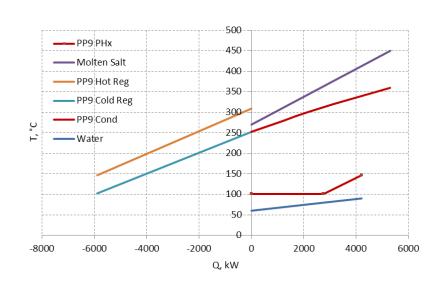

Legend: ++ extremely positive, + positive, - negative, -- extremely negative

Géc)s Davide Bonalumi


Cogenerative ORC

Parameter	Unit	Value
Salt temperature		
Inlet temperature	°C	450
Cogeneration water		
Inlet temperature	°C	60
Outlet temperature	°C	90
Minimum ΔT in heat exchange	ers	
Primary heat exchanger	°C	15
Condenser	°C	10
Regenerator	°C	20
Turbine		
Isoentropic efficiency	%	80
Electro-mechanical efficiency	%	95
Generator efficiency	%	97
Pumps		
Hydraulic efficiency	%	70
Electro-mechanical efficiency	%	95

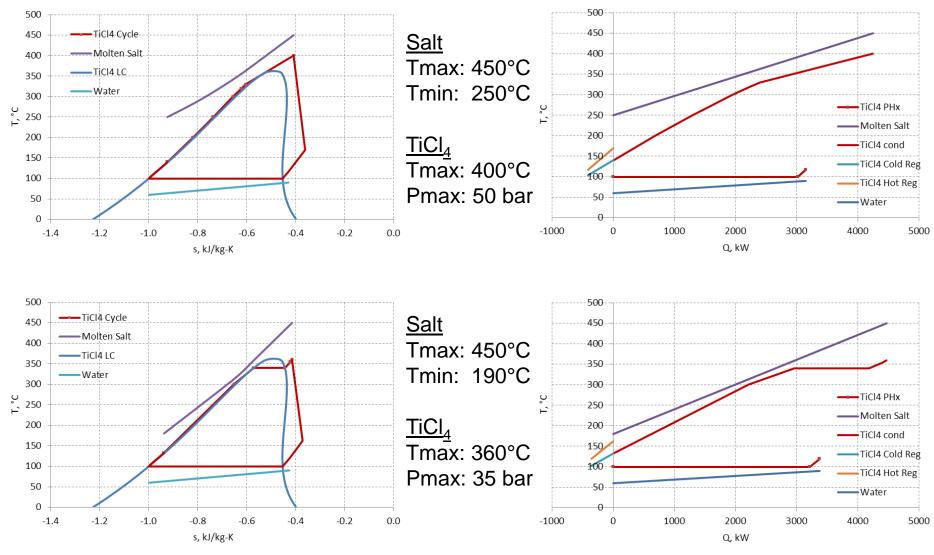
PP9 simulated with Aspen Plus


PP9 has been added in Aspen Plus components with UNIFAC Groups

Tmax salt: 450°C Tmin salt : 270°C

Tmax PP9: 360°C Pmax PP9: 25 bar

Thermodynamic properties has been calculated with Peng-Robinson EoS

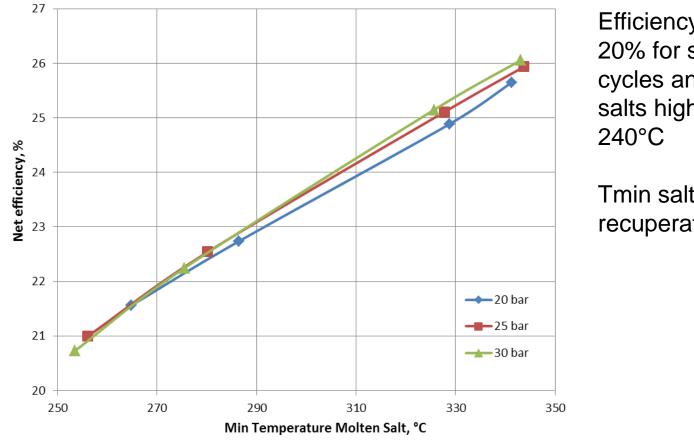


PP9 large recuperator

ENEN Roberta Roberto

TiCl₄ simulated with Aspen Plus

Thermodynamic properties has been calculated with Peng-Robinson EoS

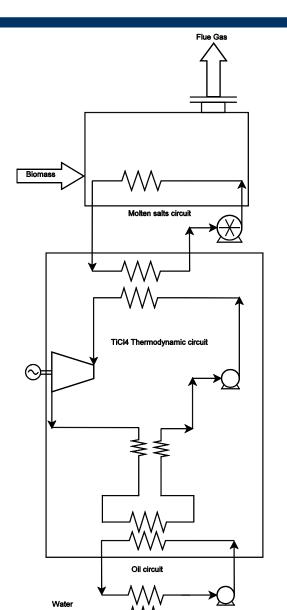

ENEN Roberta Roberto

Géc)s Davide Bonalumi

PP9 – Parametric studies

Water

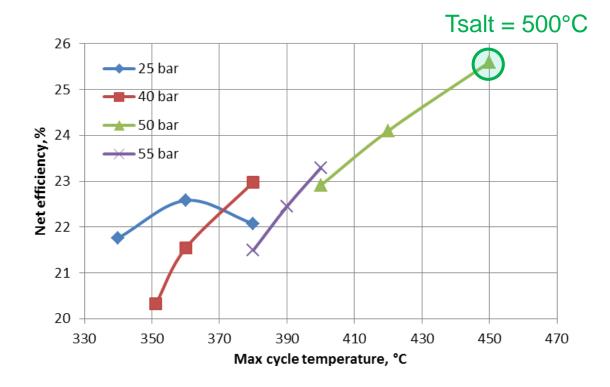
Efficiency higher than 20% for supercritical cycles and Tmin molten salts higher then about


Tmin salt limits recuperative heat

Indipendent variables						
P Max	bar	50	50	50		
T Max	°C	400	420	450		
Results						
Π _{el_cycle,net}	%	22.91	24.1	25.6		
Tout Rec	°C	148.0	163.1	183.2		
DT hot	°C	55.1	76.6	105.6		
DT cold	°C	38.8	53.8	74.0		
UA Rec	kW/K	20.4	24.0	27.0		
Power @ Recuperator	kW	452.9	590.3	751.9		
(Vout/Vin)turb	-	136.2	125.6	116.25		
Δ h is, turb	kJ/kg	95.0	101.3	109.4		

Due to reactivity with water, a possible scheme of plant, adopots a oil circuit

ENEN Roberta Roberto



POLITECNICO DI MILANO

Gec)s Davide Bonalumi

Higher cycle temperatures require higher temperature of molten salts

- Biomass fired molten salt boiler is considered.
- Molten salt is the source at variable temperature for ORC.
- Two fluids, new for ORC-purpose, are considered:
 - \circ both cycles with PP9 and TiCl₄ can reach almost 26% of net efficiency
 - PP9, due to its high molecular complexity, does not couple as well as $TiCl_4$ to variable temperature source.
- PP9 requires high recuperative thermodynamic cycle.
- Due to the dangerous reaction of TiCl₄ with H₂O more precautions must be considered when it is employed.

Next steps will focus on:

- the dimensioning of components
- design of the wood-fired molten salts boiler
- performance evaluation for a whole plant
- full-electric applications
- economic assessment
- pilot plant testing

THANK YOU

ENEN Roberta Roberto

Gec s Davide Bonalumi