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PhD project aims 

To assess the potential to provide 

combined heating and power from 

small-scale solar thermal technology 

in the United Kingdom 

To design and model a domestic-

scale system based on ORC 

technology and powered by heat 

from a roof-top solar collector array 

To investigate the most suitable 

system components based on the 

size of the system and the nature of 

the UK solar resource 
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Conventional domestic solar technologies 

• Cover with PV (MC-Si) at ≈ € 5200 

(system cost including inverter + install) 

 

• Electrical power output ≈ 1750 kWhe/yr 

≈ 200 We(avg) (50% electricity demand) 

 

• Annual electricity bill savings (up to) 

270 €/year 

 

 

Consider a 15 m2 roof 

• Assuming 25 year system life and annual running cost = 1% of capital cost.  

• Typical performance and demand figures taken from DECC and The Energy Saving Trust. 



Conventional domestic solar technologies 

Consider a 15 m2 roof 

Solar hot water option (evacuated tube): 

• System cost: 5 m2 / 30 tube collector array + 

cylinder + plumbing + install ≈ € 4500  

• Hot water provision ≈ 1450 kWhth/year  

≈ 60 litres hot water per day (50% of demand) 

• Annual savings on gas bill ≈ 75 €/year 

 

 

• Assuming 25 year system life and annual running cost = 1% of capital cost.  

• Typical performance and demand figures taken from DECC and The Energy Saving Trust. 



Conventional domestic solar technologies 

Cover remaining 70% with PV 

PV system cost. 10 m2 ≈ € 4000  

Electrical power output ≈ 1150 kWhe/year 

(130 Weavg) ≈ 35% electricity demand 

Electricity bill savings ≈ 180 €/year 

Total energy bill savings ≈ 255 €/year 

 

 

Consider a 15 m2 roof 

Solar hot water option (evacuated tube): 

• System cost: 5 m2 / 30 tube collector array + 

cylinder + plumbing + install ≈ € 4500  

• Hot water provision ≈ 1450 kWhth/year  

≈ 60 litres hot water per day (50% of demand) 

• Annual savings on gas bill ≈ 75 €/year 

• Assuming 25 year system life and annual running cost = 1% of capital cost.  

• Typical performance and demand figures taken from DECC and The Energy Saving Trust. 



Solar-ORC system 

Solar thermal heat and power system 

• Entire roof covered with solar thermal 

collectors 

• Power generation via an ORC engine 

• Cost of ORC components + install + 

additional collectors ≈ € 3000 

• Power generation in the region of  

700-950 kWh/yr (80-110 We average)  

≈ up to 30% demand 

• 90-140 €/year electricity bill savings 

 

Consider a 15 m2 roof 

• Assuming 25 year system life and annual running cost = 1% of capital cost.  

• Typical demand figures taken from DECC. 



Previous work – developing a system model 

• Initial configuration: indirect heating of 

ORC up-stream of hot water generator 

• Simple component sub-models 

• R245fa working fluid 

• Fixed fluid flow-rates 

• 15 m2 solar collector array area 

• London solar irradiance data 

• Demand profiles for domestic electricity 

and hot water use 

• Assumed that heat rejection is to mains 

water at fixed temperature (10°C) 

Freeman et al. (2013) 



Collector comparison 

• Non-concentrating evacuated tube collector at fixed 

orientation due south and 36° tilt angle 

• Concentrating parabolic trough collector with perfect 

2-axis solar tracking 

• Collectors modelled using manufacturers efficiency 

curves 

• Semi-optimized for fixed flow-rates and simulated over 

an annual period 

 

 Results of annual simulation with ORC model: 

• Evacuated tube ORC system: 588 kWh/year (67 Weavg) 

• Parabolic trough ORC system: 657 kWh/year (75 Weavg) 



Solar collector selection 

Volther 

PowerTherm 

(PV-T) 

Thermomax FN 

(Flat plate) 

Thermomax DF-100) 

Microtherm SK-6 

(CPC) NEP Polytrough 1800 Solitem PTC-1000 

Parabolic Trough Collectors (PTC) Evacuated Tube (ET) Collectors 

Flat Plate (FP) and PV-Thermal (PV-T) 

Collectors 

Compound parabolic concentrator 



Calculation of maximum power  

T0 

= 𝐻 sc,out − 𝐻 0 −𝑇0 𝑆 sc,out − 𝑆 0  

𝑊 max =  d𝑊 =  1 −
𝑇0
𝑇1
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Maximum power = exergy flow at collector outlet: 

T1 

Tsc,out 

Engine(s) 

Tsc,in T0 

Work 

Solar 

Heat 

𝜼𝐂𝐚𝐫𝐧𝐨𝐭 



Solar collector maximum work 

Annual maximum work  

(15 m2 evacuated tube array): 

590–993  kWh (67-113 Wavg), 

endoreversible 
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Parabolic Trough 

Evacuated Tube 

Evacuated Tube (CPC) 

Flat Plate or PV-T 

. 

G = 1000 W/m2 Maximum power output: 

(peak irradiance) 

Evacuated tube 

120 W/m2 (reversible) and  

65 W/m2 (endoreversible)  

at 270 °C outlet temperature. 

Parabolic trough 

240 W/m2 (reversible) and 

145 W/m2 (endoreversible)  

at 550 °C outlet temperature. 

Freeman et al. (2013) 



Controlling for optimum temperatures 

SOLAR THERMAL 

COLLECTOR 

WATER HEATING 

CIRCUIT 

ORGANIC 

RANKINE CYCLE 

Variables: 

• Working fluid flow rate 

• Solar collector flow rate 

• Evaporation pressure 

𝑚 wf 

𝑃evap 

𝑚 sc 

Objective function: 

• Maximise ORC power output 

Constraints: 

• Maximum collector/ORC fluid 

temperatures 

• Minimum/maximum pressures 

• Pinch point in evaporator 

Assumptions: 

• Zero solar fluid flow to hot water 

cylinder. 

• Constant cold sink (water) 

temperature = 10 °C 

• Cycle condensation temperature 

= 17 °C 

 



Model variants 

Fixed pressures and flow rates:  

𝑃evap= 10 bar, 𝑚 sc = 0.03 kg/s, 𝑚 wf = 0.01 kg/s, 
Initial fixed flow-rate model: 

Start point 

Tsc,in(i)  

• Modelled using “time-marching” approach 

• Exiting temperature for interval (i) becomes 

the initial temperature in interval (i+1) 

ORC 

evaporator 

Exit point 

Tsc,in(i+1) 

 

Solar 

collector 

Hot water 

cylinder coil 

𝑇sc,in i+1 = 𝑇sc,in i + 𝑄 sc (i) − 𝑄 ORC i − 𝑄 hwc(i) /𝑚 (i)𝑐p 
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Model variants 

ORC 

evaporator 

Solar 

collector 

Hot water 

cylinder coil 

Tsc,in(i)  
𝑄 sc (i) = 𝑄 ORC i + 𝑄 hwc(i) 

Variable flow-rate model: 

• Modelled using a “quasi-equilibrium” 

approach 

• Temperatures in the system are solved for 

an equilibrium state for each time interval 

Tsc,in(i)  

Fixed pressures and collector flow rate:  

Variable ORC working fluid flow rate. 
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Controlling for optimum temperatures 

Starting point: 

• Initial inlet temperature 

• Environmental parameters 

known 

• ORC condensation 

temperature/pressure 

(State 1) is known 

𝑇sc,in 

1 



Controlling for optimum temperatures 

Starting point: 

• Initial inlet temperature 

• Environmental parameters 

known 

• ORC condensation 

temperature/pressure 

(State 1) is known 

• Find the collector outlet 

temperature and flow rate 

corresponding to maximum 

exergy output for given 

𝑇sc,in, 𝑇ext and 𝐺 0
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𝑚 sc,optimum 

𝑇sc,in 
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Controlling for optimum temperatures 

Calculation procedure 

• Choose initial 𝑇sc,in 

• Set optimal 𝑇sc,out 
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𝑇sc,in 

𝑇sc,out 
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Controlling for optimum temperatures 

1-2 

3 

4 𝑃evap 

𝑇sc,in 

𝑇sc,out 
Calculation procedure 

• Choose initial 𝑇sc,in 

• Set optimal 𝑇sc,out 

• Calculate 𝑇3 and 𝑚 wf 

• Try higher values of 𝑃evap 

until pinch limit reached 

• Calculate power output 

from ORC engine. 
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Controlling for optimum temperatures 

Calculation procedure 

• Choose initial 𝑇sc,in 

• Set optimal 𝑇sc,out 

• Calculate 𝑇3 and 𝑚 wf 

• Try higher values of 𝑃evap 

until pinch limit reached 

• Calculate power output 

from ORC engine. 

• Choose a new 𝑇sc,in 
1-2 

𝑇sc,in(new) 
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Controlling for optimum temperatures 

Calculation procedure 

• Choose initial 𝑇sc,in 

• Set optimal 𝑇sc,out 

• Calculate 𝑇3 and 𝑚 wf 

• Try higher values of 𝑃evap 

until pinch limit reached 

• Calculate power output 

from ORC engine. 

• Choose a new 𝑇sc,in 

• Repeat calculation 

procedure until 𝑊  is 

maximised 

1-2 

3 

4 
𝑊 = 𝜂 ℎ3 − ℎ4  
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Results (annual average day) 

• Mean day work output = 1.9 kWh/day = 79 W average 

• 16.5% increased power output compared to system where only 

working fluid flow rate is varied 
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Results (annual average day) 
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Conclusions 

  

• Domestic heat and power systems based on solar-ORC 

technology have the potential to be a versatile and cost-effective 

alternative to conventional PV and solar hot water systems 

• Modulation of system flow-rates and evaporation pressure has 

demonstrated an increase in the power output of the system 

under variable (solar) heat input 

• A methodology has been proposed for calculating the maximum 

power settings based on exergy analysis of the solar collector 

• Cost and practicality limitations are to be considered for 

implementation in a real control strategy 

 



Thank you 
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