

Testing of a new supercritical ORC technology for efficient power generation from **geothermal** low temperature resources

ASME ORC 2013 Conference

Nicola Rossi Rotterdam, 6-8 October 2013

Enel today An international, integrated energy operator

Presence in: 40 countries Installed capacity: 97.839 MW

Annual output: 295,7 TWh

EBITDA: 16,7 bln €

Customers: 60,5 million

Employees: 73.702 CAPEX 2013-2017:

€27 billion

Data updated @ 31/12/2012

1st utility in Italy, 2nd largest in Europe by installed capacity Present throughout the entire electricity and natural gas value chain

Enel today An international, integrated energy operator

generated by the ENEL group, excluding big hydro installations

Enel geothermal experience: a long history of success

Data updated @ 31/12/2011

34 units, 722 MW gross generating capacity

The big potential of low-medium enthalpy resources

World Geothermal Electricity 20'000 -80'000 70'000 Installed Capacity 15'000 60'000 Produced Energy 50'000 40'000 אין ₹ 10'000 30'000 5'000 20'000 10'000 0 0 1980 1990 2000 2010 2020 1950 1960 1970 Years

GEO - Total

GEO – Low/medium enthalpy

Installed Capacity [MW]				
	2005	2010	Δ%	
TOT_GEO	8.912	10.715	20,2%	
GEO_LH	685	1.178	72,0%	

ENEL international projects

USA	 ORC (Organic Rankine Cycles) 2 plants in operation (Salt Wells, Stillwater) 1 under construction (Cove Fort I) Other investments under evaluation (Cove Fort II, Surprise Valley) Future developments: coupling with CSP technology 			
Salvador	 Participation in LaGeo S.A. (~1/3 of shares) 2 fields under exploitation (Ahuachapan, Berlin) – 200MW, 1,4 TWh/yr 2 fields under exploration (San Vicente, Chinameca) 			
Chile	 Cerro Pabellon 40 MW Single Flash plant (Apacheta area) Construction to be started 			
Other Countries	 Exploration in the Mediterranean Area (Greece, Turkey) and in Central America (Nicaragua) 			

Stillwater Plant – Pictures & Layout

ASME ORC Conference, 6-8 October 2013

Innovation in binary cycle technology

STATE OF THE ART

 $^{(1)}$ 5 \div 10 MWe units, only supplies excluding extraction/injection wells

ENHANCED PERFORMANCES & OPERATIONAL FLEXIBILITY

- To upgrade geothermal resources exploitation and reduce risks (electric generation more profitable)
- To better match the characteristics of geothermal reservoirs (more flexibility)
- To avoid performance decline due to the natural resource depletion and temperature drop

INNOVATION MAINSTAYS

Subcritical vs. Supercritical Cycles

Supercritical cycles allow a better exploitation of the geothermal resource (no pinch point limitation), an higher generation efficiency and simpler plant configuration

Advanced ORC technologies – Development program

Project detailed program and partnership

Fluid and cycle selection

Supercritical cycles provide higher utilization efficiency for all geo-fluid temperature range, resulting in max 23% increase in net power

Advanced 500 KW_e ORC pilot plant (Livorno)

Pilot plant in operation since January 2012

Supercritical ORC cycle

- Working Fluid: refrigerant (not toxic, not flammable)
- Axial turbine
- N°3 shell & tube heat exchangers
- N°1 shell & tube regenerator
- Air cooled condenser "spray & dry"
- Multi-stadium centrifugal pump

ASME ORC Conference, 6-8 October 2013

Pilot Plant circuit overall scheme

Possibility to operate in flexible and controlled conditions

Experimental program

Experimantal phases

- PHASE 1 → Commissioning and performance tests
- PHASE 2 → Component characterization and operational optimal curve determination
- PHASE 3 → System control philosophy optimization
- PHASE 4 → Operating stability evaluation through long-run tests

Heat source experimental conditions				
	т [°С]	M [kg/s]		
Mmax-Tmax	170	16,6		
Mmax-Tnom	152	16,6		
Mmax-Tmin	130	16,6		
Mnom-Tmax	170	12,3		
Mnom-Tnom	152	12,3		
Mnom-Tmin	130	12,3		
Mmin-Tmax	170	8,6		
Mmin-Tnom	152	8,6		
Mmin-Tmin	130	8,6		

M = Flow rate, T=Temperature, nom=nominal, max=maximum, min=minimum

Performance tests at design conditions

ASME ORC Conference, 6-8 October 2013

1 Gross power minus circulating pump power consumption 2 Gross power minus circulating pump and ACC power consumption

Thermodynamic cycle - Design vs. experimental

Design

Actual

Theoretical thermodynamic cycle was reproduced with negligible deviations

ASME ORC Conference, 6-8 October 2013

Performance tests on main componets

Turboexpander

@ Fixed WF inlet P and T

Performances higher than design for all main components (turbine, feed pump, heat exchangers)

Isoentropic efficiency (%)

Cycle optimization tests

Cycle optimization

Optima operating curves

Optimized performance curves implemented in DCS

1 Gross power minus circulating pump power consumption

2 Gross power minus circulating pump and ACC power consumption

Operational limit evaluation

High operational flexibiliy, capability to operate in subcritical and supercritical conditions

USE: Public

Scale up preliminary evaluation

Supercritical vs. Subcritical with iso-butane

INPUT DATA

- Brine inlet temperature: 152°C
- Brine mass flow: 190 kg/s
- Design net power: 10 MWe
- Design ambient temperature: 10.7 °C
- Summer ambient temperature: 31.1 °C
- Winter ambient temperature: -1.1 °C

Annual net energy production estimation ~ 15-20% higher for supercritical ORC with respect to subcritical

22

Concluding remarks

- During the experimentation at the pilot scale, supercritical technology showed no criticalities in terms of components and control stability
- Design criteria were confirmed by experimental results and performances of main components and equipments were in line or higher than those expected
- The pilot plant was able to operate in a wide range of brine temperature and flow rates (± 30% vs. design), highlighting a high operational flexibility and the ability to operate even in subcritical conditions
- During the experimental activities significant degradation phenomena of the working fluid were not observed which, not being flammable, determines obvious simplifications in the authorization and design phases compared to conventional hydrocarbon fluids
- The extrapolation of results from pilot scale (500kWe) to full scale (10MWe) confirmed the findings of the feasibility phase: the supercritical technology results in an increase of net annual electricity production in the range of 15-20% compared to one-level pressure subcritical cycles available on the market

Thank you for your attention

