

ASME ORC 2013
DORIS K. WEISS & HANK LEIBOWITZ

Overview

Problem Statement & Background

Technology and Challenges

Condenser controls

Conclusions / Recommendations

Problem Statement

Effective condenser operation & controls with air cooling differ from condensers

using cooling water.

Power plant -Rankine cycle

Project Plot Plan – Heavy Oil Production

Ambient Temperature Range

LARGE TEMPERATURE SWINGS

- March October
- Daily swings of 10-20°C

-40 TO +33 °C

Air Cooling – ORC Alberta Installation

ORC Process Flow Diagram (PFD)

"Student: Dr. Einstein, Aren't these the same questions as last year's [physics] final exam?

Dr. Einstein: Yes; But this year the answers are different."

- Albert Einstein

Overview

Problem Statement & Background

Technology and Challenges

Condenser Controls

Conclusion & Recommendations

"LEPAGE FINISHED 43RD AT THE RACE BECAUSE OF HIS CAR SUFFERING FROM OVERHEATING FAILURES." REF. AUTORACING. COM

Challenges-Low grade waste heat & varying ambient

Large variations

1.) Daily Temperature

2.) Seasonal Temps.

Summer vs. Winter

More Power in winter

 Design parameters for varying temps.

3.) Design Conditions

Winter Conditions / other considerations

- Expander outlet pressure (or delta P) not 'unlimited'
- Reducing pressure too much can 'choke' expander
- Fouling of air cooler can have significant impact
- Varying conditions affect waste heat exchanger

Parameters Based on 10 °C design

Phase Envelope

Rapid Temperature Rise

Economic losses – without controls

- 17 MW h loss per week (estimate)
- \$55,000 \$72,000 per year (\$64-85/MWh)
- 'Full time 'operator (>\$100,000/yr)
- Instrumentation payback < 6 months

Overview

Problem Statement & Background

Technology and Challenges

Condenser controls

Conclusions / Recommendations

Control Schemes

- No automation
- No VFD
- No Surge Tank

1.) Float on Pressure

- 2.) Pressure Control
- Control Valve
- Louvres- side
- Surge Tank

- Control Valves
- Auto Louvres
- VFD
- Surge Tank

3.)Temperature Control

'No' Control Float on Pressure

Pressure Control

Temperature control

Capillary Tube – Temp sensor

• Enable more stable temperature control – side louvres

Control Philosophy, Narrative etc.

- 1. Philosophy
- 2. Narrative (specific to project)
- 3. PID, APC controls etc.

Fully Automated

Peak time optimization

Seasonal bias

Overview

Problem Statement & Background

Technology and Challenges

Condenser controls

Conclusions / Recommendations

Recommendations

Evaluate the whole process

Step 1

Step 2

Temperature
 Control scheme

 Consider dynamic simulation

Step 3

Conclusions

• Float on pressure inefficient

Choose best control logic

• VFD's and automation are crucial

Main conclusions? • WHAT ARE THE MAIN CONCLUSIONS?

Main Requirements for smooth control

Appreciation

- Hank Leibowitz (co-author)
- Doug Baird (instrumentation specialist)
- Various Colleagues and industrial contacts
- Devon devon

